Share This Article:

A Dual Effect of Au-Nanoparticles on Nucleic Acid Cholesteric Liquid-Crystalline Particles

Abstract Full-Text HTML Download Download as PDF (Size:1086KB) PP. 461-471
DOI: 10.4236/jbnb.2011.24056    4,078 Downloads   7,185 Views   Citations


Au-nanoparticles (size about 2 nm, but not 5 or 15 nm) are capable of effectively incorporating into quasinematic layers of particles of cholesteric liquid-crystalline dispersion formed by double-stranded nucleic acid molecules of various families (DNA and poly(I)xpoly(C)). This Au-size-dependent process is accompanied by a decrease in amplitudes of abnormal bands in the CD spectra specific to initial cholesteric liquid-crystalline dispersions and simultaneously by an appearance of plasmon resonance band in visible absorption spectrum. The study of properties of particles of cholesteric liquid-crystalline dispersion treated with Au-nanoparticles by means of various physico-chemical methods demonstrates that incorporation of Au-nanoparticles into quasinematic layers of these particles results in two effects: i) it facilitates reorganization of the spatial cholesteric structure of particles, and ii) it induces the formation of Au-clusters in the content of particles. It is not excluded that these effects represent a possible reason for genotoxicity of Au-nanopar- ticles.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Y. Yevdokimov, S. Skuridin, V. Salyanov, V. Popenko, V. Rudoy, O. Dement′eva and E. Shtykova, "A Dual Effect of Au-Nanoparticles on Nucleic Acid Cholesteric Liquid-Crystalline Particles," Journal of Biomaterials and Nanobiotechnology, Vol. 2 No. 4, 2011, pp. 461-471. doi: 10.4236/jbnb.2011.24056.


[1] B. Kang, M. A.Mackey, M.A.El-Sayed, “Nuclear target- ing of gold nanoparticles in cancer cells induces DNA damage, causing cytokinesis arrest and apoptosis”, Jour- nal of the American Chemical Society, Vol. 132, 2010, pp. 1517-1519.
[2] V. Wiwanitkit, A. Sereemaspun, R. Rojanathanes, “Effect of gold nanoparticles on spermatozoa: the first world re- port”, Fertility & Sterility, Vol. 91, 2009, e7-e8.
[3] S. T. Zakhidov, T. L. Marshak, E. A. Malolina, A. Yu. Kulibin, I. A. Zelenina, S. M. Pavlyuchenkova, V. M. Rudoy, O. V. Dement’eva, S. G. Skuridin, Yu. M. Yev- dokimov, “Gold nanoparticles impair nuclear chromatin decondensation process in murine sperm cells in vitro”, Biologicheskie membrany (Russian edition), Vol. 27, 2010, pp. 349-353.
[4] Y. P. Liu, W. Meyer-Zaika, S. Franzka, G. Schmid, M. Tsoli, H. Kuhn, “Gold-cluster degradation by transition of B-DNA into A-DNA and formation of nanowires”, Angewandte Chemie International Edition, Vol. 42, 2003, pp. 2853-2857.
[5] M. Tsoli, H. Kuhn, W. Brandau, H. Esche, G. Schmid, “Cellular uptake and toxicity of Au55 clusters”, Small, Vol. 1, 2005, pp. 841-844.
[6] Y. Pan, S. Neuss , A. Leifert, M. Fischer, F. Wen, U. Si- mon, G. Schmid, W. Brandau, W. Jahnen-Dechent, “Size-dependent cytotoxicity of gold nanoparticles”, Small, vol. 3, 2007, pp. 1941-1949.
[7] E. Boisselier, D. Astruc, “Gold nanoparticles in nanome- dicine: preparations, imaging, diagnostics, therapies and toxicity”, Chemical Society Reviews, Vol. 38, 2009, pp. 1759-1782.
[8] X-D. Zhang, M-L. Guo, H-Y. Wu, Y-Q. Ding, X. Feng, L-A. Zhang, “Irradiation stability and cytotoxicity of gold nanoparticles for radiotherapy”, International Journal of Nanomedicine, Vol. 4, 2009, pp. 165-173.
[9] Y. Jin, M. Wu, X. Zhao, “Toxicity of nanomaterials to living cells”, Technical Proceedings of the 2005 NSTI Nanotechnology Conference and Trade Show, Vol. 1, Chapter 6: Bio Nano Materials, 2005, pp. 274-277.
[10] J. Ai, E. Biazar, M. Jafarpour, M. Montazeri, A. Majdi, S. Aminifard, M. Zafari, H. R. Akbari, H. G. Rad , “Nanotoxicology and nanoparticle safety in biomedical designs”, International Journal of Nanomedicine, Vol. 6, 2011, pp. 1117-1127.
[11] Yu. M. Yevdokimov, V. I. Salyanov, S. V. Semenov, S. G. Skuridin, “DNA Liquid-Crystalline Dispersions and Nanostructures”, In: Yu. M. Yevdokimov, Ed., CRC Press, Taylor & Francis group, Boca Raton, London, N-Y., 2011, 320 p.
[12] F. Livolant, A. Leforestier, “Condensed phases of DNA: Structures and phase transitions”, Progress in Polymer Science, Vol. 21, 1996, pp.1115-1164.
[13] Yu. M. Yevdokimov, V. I. Salyanov, S. G. Skuridin, S. V. Semenov, O. N. Kompanets., “The CD spectra of double- stranded DNA liquid-crystalline dispersions”, Nova Sci. Publishers, N-Y., 2011, 103 p.
[14] Yu. M. Yevdokimov, S. G. Skuridin, B. A. Chernuha, “The background for creating biosensors based on nucleic acid molecules”, In: “Advances in Biosensors,” A. P. F. Turner and Yu. M Yevdokimov (eds), Vol. 3., 1995, JAI Press, Greenwich, London, pp. 143-164.
[15] J. Turkevich, P. C. Stevenson, J. Hillier, “A Study of the nucleation and growth processes in the synthesis of colloidal gold”, Discussions of the Faraday Society, Vol. 11, 1951, pp. 55-75.
[16] K. R. Brown, D. G. Walter, M. J. Natan, “Seeding of colloid-dal Au nanoparticle solutions. 2. Improved control of particle size and shape”, Chemistry of Materials, Vol. 12, 2000, pp. 306-313.
[17] D. G. Duff, A. Baiker, P. P. Edwards, “A new hydrosol of gold clusters. 1. Formation and particle size variation”, Langmuir, Vol. 9, 1993, pp. 2301-2309.
[18] H. Zipper, H. Brunner, J. Bernhagen, F. Vitzthum, “In- vestigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and metho- dological implications”, Nucleic Acids Research, Vol. 32, 2004, pp. e103 doi:10.1093/nar/gnh101.
[19] O. N. Kompanets, “Portable optical biosensors for detection of biologically active and toxic compounds”, Uspekhi Fizicheskikh Nauk (Russian edition), Vol. 174, 2004, pp. 686-690.
[20] E. V. Shtykova, V. V. Volkov, V. I. Salyanov, Yu. M. Yevdokimov, “SAXS_data_based structural modeling of DNA-gadolinium complexes fixed in particles of cholesteric liquid-crystalline dispersions”, European Biophysics Journal, Vol. 39, 2010, pp. 1313-1322.
[21] S. G. Skuridin, V. A. Dubinskaya, E. V. Shtykova, V. V. Volkov, V. M. Rudoy, O. V. Dement’eva, V. A. Kuzmin, E. S. Lisitsyna, S. T. Zakhidov, I. A. Zelenina, Yu. M. Yevdokimov, “Retention of gold nanoparticles in the structure of quasienematic layers formed by DNA molecules”, Biologicheskie membrany (Russian edition), Vol. 28, 2011, pp. 191–198.
[22] P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, D. I. Svergun, “PRIMUS: A Windows PC-based system for small-angle scattering data analysis”, Journal of Applied Crystallography, Vol. 36, 2003, pp. 1277–1282.
[23] V. A. Belyakov, V. P. Orlov, S. V. Semenov, S. G. Skuridin S.G., Yu. M. Yevdokimov, “Comparison of calculated and observed CD spectra of liquid crystalline dispersions formed from double-stranded DNA and from DNA complexes with coloured compounds”, Liquid Crystals, Vol. 20, 1996, pp. 777-784.
[24] C. A. Mirkin, R. L. Letsinger, R. C. Mucic, J. J. Storhoff, “A DNA-based method for rationally assembling nano- particles into macroscopic materials”, Nature, Vol. 382, 1996, pp. 607-609.
[25] A. P. Alivisatos, K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, P. Scultz, “Organization of “nanocrystal molecules” using DNA”, Nature, Vol. 382, 1996, pp. 609-611.
[26] A. Kumar, M. Pattarkine, M. Bhadbhade, A. B. Mandale, K. N. Ganesh, S. S. Datar, C. V. Dharmadhikari, M. Sastry, “Linear superclusters of colloidal gold particles by electrostatic assembly on DNA templates”, Advanced Materials, Vol. 13, 2001, pp. 341-344.
[27] M. Sastrya, A. Kumar, S. Datar, C. V. Dharmadhikari, “DNA-mediated electrostatic assembly of gold nanopar- ticles into linear arrays by a simple drop-coating procedure”, Applied Physics Letters, Vol. 78, 2001, pp. 2943- 2945.
[28] M. G. Warner, J. E. Hutchison, “Linear assemblies of na- noparticles electrostatically organized on DNA scaffolds”, Nature Materials, Vol. 2, 2003, pp. 272-277.
[29] L. V. Zherenkova, P. V. Komarov, P. G. Khakatur,” Simulation of the metallization of a fragment of a deoxy- ribonucleic acid molecule with gold nanoparticles”, Col- loid Journal (Russian edition)., Vol. 69, 2007, pp. 753- 765.
[30] S. Link, M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods”, The Journal of Physical Chemistry B, Vol. 103, 1999, pp. 8410-8426.
[31] S. L. Westcott, S. J. Oldenburg, T. R. Lee, N. J. Halas, “Construction of simple gold nanoparticle aggregates with controlled plasmon-plasmon interactions”, Chemical Physics Letters, Vol. 300, 1999, pp. 651-655.
[32] S. Link, M. A. El-Sayed, “Shape and size dependence of radioactive, non radioactive and photothermal properties of gold nanocrystals”, International Reviews in Physical Chemistry, Vol. 19, 2000, pp. 409-453.
[33] K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles”, Nano Letters, Vol. 3, 2003, pp. 1087-1090.
[34] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles”, Optics Communications, Vol. 220, 2003, pp. 137-141.
[35] P. V. Kamat, “Photophysical, photochemical and photo- catalytic aspects of metal nanoparticles”, The Journal of Physical Chemistry B, Vol. 106, 2002, pp. 7729-7744.
[36] N.G. Khlebtsov, A.G. Melnikov, L A. Dykman., V.A Bogatyrev, “Optical properties and biomedical applica- tions of nanostructures based on gold and silver biocon- jugates. Photopolarimetry in Remote Sensing”, G.Videen, Ya.S. Yatskiv and M. I. Mishchenko (eds.), NATO Sci- ence Series, II. Mathematics, Physics, and Chemistry, Vol. 161, Kluwer, Dordrecht, 2004, pp. 265-308.
[37] L.Dykman, V. Bogatyrev, S. Shchyogolev, N. Khlebtsov, Gold nanoparticles: synthesis, properties, biomedical applications, Nauka, Moscow, 2008, pp. 70-78 (in Ru- ssian).
[38] P. Mulvaney, “Surface plasmon spectroscopy of nano- sized metal particles, Langmuir, 1996, Vol. 12, pp. 788- 800.
[39] G. Decher, “Fuzzy nanoassemblies: toward layered polymeric multicomposites”, Science, Vol. 277, 1997, pp. 1232-1237.
[40] Yu. M. Yevdokimov, “From particles of liquid-crystalline dispersions to rigid deoxyribonucleic acid nanoconstruc- tions”, Liquid Crystals Today, Vol. 20, 2011, pp. 2-19.
[41] A. Guinier, G. Fournet, Small-angle scattering of X-rays. John Wiley and Sons, New York, 1955. 269 p.
[42] O.Glatter, O. Kratky, Small-angle X-ray scattering. Acad. Press, London, 1982. 515 p.
[43] L. A. Feigin, D. I. Svergun, Structure analysis by small- angle X-ray and neutron scattering, (1987), Plenum Press, New York
[44] H.D. Mertens, D. I. Svergun, “Structural characterization of proteins and complexes using small-angle X-ray solu- tion scattering”, Journal of Structural Biology, Vol. 172, 2010, pp. 128-141.
[45] D.I. Svergun, A.V. Semenyuk, L.A. Feigin, “Small-an- gle-scattering-data treatment by the regularization me- thod”, Acta Crystallographica, Vol. A44, 1988, pp. 244- 250.
[46] A. Rocha, Y. Zhou, S. Kundu, J. M. Gonzalez, S. B. Vin- son, H. Liang, “In vivo observation of gold nanoparticles in the central nervous system of Blaberus discoidalis”, Journal of Nanobiotechnology, Vol. 9, 2011, doi: 10.1186/1477-3155-9-5.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.