Share This Article:

Dietary sugars inhibit biologic functions of the pattern recognition molecule, mannose-binding lectin

Abstract Full-Text HTML Download Download as PDF (Size:850KB) PP. 41-49
DOI: 10.4236/oji.2011.12005    4,870 Downloads   13,138 Views   Citations

ABSTRACT

Mannose-binding lectin (MBL), a mammalian lectin, is a pattern recognition molecule of the innate immune system and recognizes carbo-hydrates that are exposed on pathogens. In this study, we observed that fructose down regu-lates MBL-mediated innate immune mechanisms against both influenza A virus (IAV) and Staphy-lococcus aureus. These mechanisms include the lectin complement pathway and coagulation enzyme-like activities on both pathogens. Fur-thermore, fructose also reduces MBL-mediated phagocytosis of S. aureus and IAV and MBL- mediated IAV infection to epithelial cells. In contrast, sucrose inhibits MBL-mediated im-mune mechanisms against S. aureus but not IAV. Together, our studies show that dietary sugars, in particular fructose, negatively regulate the innate immunity against viral and bacterial pathogens.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Takahashi, K. , Chang, W. , Moyo, P. , White, M. , Meelu, P. , Verma, A. , Stahl, G. , Hartshorn, K. and Yajnik, V. (2011) Dietary sugars inhibit biologic functions of the pattern recognition molecule, mannose-binding lectin. Open Journal of Immunology, 1, 41-49. doi: 10.4236/oji.2011.12005.

References

[1] Edelman, S.M., Kasper, D.L. (2008) Symbiotic commensal bacteria direct maturation of the host immune system. Curr Opin Gas-troenterol, 24, 720-724. doi:10.1097/MOG.0b013e32830c4355
[2] Viswanathan, V.K., Hecht, G. (2000) Innate immunity and the gut. Curr Opin Gastroenterol, 16, 546-551. doi:10.1097/00001574-200011000-00015
[3] Chaplin, D.D. (2010) Overview of the immune response. J Allergy Clin Immunol, 125, S3-23. doi:10.1016/j.jaci.2009.12.980
[4] LaRosa, D.F., Rahman, A.H., Turka, L.A. (2007) The innate immune system in allograft rejection and tolerance. J Immunol, 178, 7503-7509.
[5] Halford, J.C. (2004) Clinical pharmacotherapy for obesity: current drugs and those in advanced development. Curr Drug Targets, 5, 637-646. doi:10.2174/1389450043345191
[6] McGuinness, O.P., Cherrington, A.D. (2003) Effects of fructose on hepatic glucose metabolism. Curr Opin Clin Nutr Metab Care, 6, 441-448. doi:10.1097/01.mco.0000078990.96795.cd
[7] Tappy, L., Le, K.A. (2010) Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev, 90, 23-46. doi:10.1152/physrev.00019.2009
[8] Sanchez, A., Reeser, J.L., Lau, H.S., Yahiku, P.Y., Willard, R.E., McMillan, P.J., Cho, S.Y., Magie, A.R., Register, U.D. (1973) Role of sugars in human neutrophilic phagocytosis. Am J Clin Nut, 26, 1180-1184.
[9] Silva, M.T. (2010) When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system. J Leukoc Biol, 87, 93-106. doi:10.1189/jlb.0809549
[10] Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., Ezekowitz, R.A. (1999) Phylogenetic perspectives in innate immunity. Science, 284, 1313-1318. doi:10.1126/science.284.5418.1313
[11] Uemura, K., Saka, M., Nakagawa, T., Kawasaki, N., Thiel, S., Jensenius, J.C., Kawasaki, T. (2002) L-MBP is expressed in epithelial cells of mouse small intestine. J Immunol, 169, 6945-6950.
[12] Hansen, S., Thiel, S., Willis, A., Holmskov, U., Jensenius, J.C. (2000) Purification and characterization of two mannan-binding lectins from mouse serum. J Immunol, 164, 2610-2618.
[13] [13]Oka, S., Ikeda, K., Kawasaki, T., Yamashina, I. (1988) Isolation and characterization of two distinct mannan-binding proteins from rat serum. Arch Biochem Biophys, 260, 257-266.
[14] Agah, A., Montalto, M.C., Young, K., Stahl, G.L. (2001) Isolation, cloning and functional characterization of porcine man-nose-binding lectin. Immunology, 102, 338-343. doi:10.1046/j.1365-2567.2001.01191.x
[15] [15]Sumiya, M., Super, M., Tabona, P., Levinsky, R.J., Arai, T., Turner, M.W., Summerfield, J.A. (1991) Molecular basis of opsonic defect in immunodeficient children. Lancet, 337, 1569-1570.
[16] [16]Super, M., Thiel, S., Lu, J., Levinsky, R.J., Turner, M.W. (1989) Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet, 2, 1236-1239.
[17] Burnet, F.M., McCrea, J.F. (1946) Inhibitory and inactivating action of normal ferret sera against an influenza virus strain. Aust J Exp Biol Med Sci, 24, 277-282. doi:10.1038/icb.1946.41
[18] Anders, E.M., Hartley, C.A., Jackson, D.C. (1990) Bovine and mouse serum beta inhibitors of influenza A viruses are man-nose-binding lectins. Proc Natl Acad Sci U S A, 87, 4485-4489. doi:10.1073/pnas.87.12.4485
[19] Thiel, S., Vorup-Jensen, T., Stover, C.M., Schwaeble, W., Laursen, S.B., Poulsen, K., Willis, A.C., Eggleton, P., Hansen, S., Holm-skov, U., Reid, K.B., Jensenius, J.C. (1997) A second serine protease associated with mannan-binding lectin that activates comple-ment. Nature, 386, 506-510. doi:10.1038/386506a0
[20] Matsushita, M., Fujita, T. (1992) Activation of the classical complement pathway by mannose-binding protein in association with a novel C1s-like serine protease. J Exp Med, 176, 1497-1502. doi:10.1084/jem.176.6.1497
[21] Fujita, T., Endo, Y., Nonaka, M. (2004) Primitive complement system--recognition and activation. Mol Immunol, 41, 103-111.
[22] Takahashi, K., Chang, W.C., Takahashi, M., Pavlov, V., Ishida, Y., La Bonte, L., Shi, L., Fujita, T., Stahl, G.L., Van Cott, E.M. (2011) Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation. Immunobiology, 216, 96-102.
[23] Krarup, A., Wallis, R., Presanis, J.S., Gal, P., Sim, R.B. (2007) Simultaneous activation of complement and coagulation by MBL-associated serine protease 2. PLoS ONE, 2, e623.
[24] Presanis, J.S., Hajela, K., Ambrus, G., Gal, P., Sim, R.B. (2004) Differential substrate and inhibitor profiles for human MASP-1 and MASP-2. Mol Immunol, 40, 921-929.
[25] Takahashi, K., Ezekowitz, R.A. (2005) The role of the mannose-binding lectin in innate immunity. Clin Infect Dis 41 Suppl, 7, S440-444.
[26] Steffensen, R., Thiel, S., Varming, K., Jersild, C., Jensenius, J.C. (2000) Detection of structural gene mutations and promoter poly-morphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers. J Immunol Methods, 241, 33-42.
[27] Moller-Kristensen, M., Ip, W.K., Shi, L., Gowda, L.D., Hamblin, M.R., Thiel, S., Jensenius, J.C., Ezekowitz, R.A., Takahashi, K. (2006) Deficiency of Mannose-Binding Lectin Greatly Increases Susceptibility to Postburn Infection with Pseudomonas aeruginosa. J Immunol, 176, 1769-1775.
[28] Shi, L., Takahashi, K., Dundee, J., Shahroor-Karni, S., Thiel, S., Jensenius, J.C., Gad, F., Hamblin, M.R., Sastry, K.N., Ezekowitz, R.A. (2004) Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J Exp Med, 199, 1379-1390.
[29] Gadjeva, M., Paludan, S.R., Thiel, S., Slavov, V., Ruseva, M., Eriksson, K., Lowhagen, G.B., Shi, L., Takahashi, K., Ezekowitz, A., Jensenius, J.C. (2004) Mannan-binding lectin modulates the response to HSV-2 infection. Clin Exp Immunol, 138, 304-311.
[30] Fraser, I.P., Koziel, H., Ezekowitz, R.A. (1998) The serum mannose-binding protein and the macrophage mannose receptor are pat-tern recognition molecules that link innate and adaptive immunity. Semin Immunol, 10, 363-372.
[31] Nayak, D.P., Hui, E.K., Barman, S. (2004) Assembly and budding of influenza virus. Virus Res, 106, 147-165.
[32] Lynch, J.P., 3rd, Walsh, E.E. (2007) Influenza: evolving strategies in treatment and prevention. Semin Respir Crit Care Med, 28, 144-158.
[33] Munoz, F.M. (2003) Influenza virus infection in infancy and early childhood. Paediatr Respir Rev, 4, 99-104.
[34] Cate, T.R. (1998) Impact of influenza and other community-acquired viruses. Semin Respir Infect, 13, 17-23.
[35] Martin, M.A. (1993) Nosocomial infections in intensive care units: an overview of their epidemiology, outcome, and prevention. New Horiz, 1, 162-171.
[36] Cosgrove, S.E., Qi, Y., Kaye, K.S., Harbarth, S., Karchmer, A.W., Carmeli, Y. (2005) The impact of methicillin resistance in Staphy-lococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges.[see comment]. Infect Cont Hosp Epidemiol, 26, 166-174.
[37] Johnston, B.L. (1994) Methicillin-resistant Staphylococcus aureus as a cause of community-acquired pneumonia--a critical review. Semin Respir Infect, 9, 199-206.
[38] Sethi, S. (2002) Bacterial pneumonia. Managing a deadly complication of influenza in older adults with comorbid disease. Geriatrics, 57, 56-61.
[39] Morens, D.M., Taubenberger, J.K., Fauci, A.S. (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic in-fluenza: implications for pandemic influenza preparedness.[see comment]. J Infect Dis, 198, 962-970.
[40] Hartshorn, K.L., Collamer, M., Auerbach, M., Myers, J.B., Pavlotsky, N., Tauber, A.I. (1988) Effects of influenza A virus on human neutrophil calcium metabolism. J Immunol, 141, 1295-1301.
[41] Hartshorn, K.L., Sastry, K.N., Chang, D., White, M.R., Crouch, E.C. (2000) Enhanced anti-influenza activity of a surfactant protein D and serum conglutinin fusion protein. Am J Physiol Lung Cell Mol Physiol, 278, L90-98.
[42] Collard, C.D., Montalto, M.C., Reenstra, W.R., Buras, J.A., Stahl, G.L. (2001) Endothelial oxidative stress activates the lectin com-plement pathway: role of cytokeratin 1. Am J Pathol, 159, 1045-1054.
[43] Hartshorn, K.L., White, M.R., Shepherd, V., Reid, K., Jensenius, J.C., Crouch, E.C. (1997) Mechanisms of anti-influenza activity of surfactant proteins A and D: comparison with serum collectins. Am J Physiol, 273, L1156-1166.
[44] Lee, R.M., White, M.R., Hartshorn, K.L. (2006) Influenza a viruses upregulate neutrophil toll-like receptor 2 expression and function. Scand J Immunol, 63, 81-89.
[45] White, M.R., Crouch, E., Chang, D., Sastry, K., Guo, N., Engelich, G., Takahashi, K., Ezekowitz, R.A., Hartshorn, K.L. (2000) En-hanced antiviral and opsonic activity of a human mannose-binding lectin and surfactant protein D chimera. J Immunol, 165, 2108-2115.
[46] Kase, T., Suzuki, Y., Kawai, T., Sakamoto, T., Ohtani, K., Eda, S., Maeda, A., Okuno, Y., Kurimura, T., Wakamiya, N. (1999) Human mannan-binding lectin inhibits the infection of influenza A virus without complement. Immunology, 97, 385-392.
[47] Weis, W.I., Drickamer, K., Hendrickson, W.A. (1992) Structure of a C-type mannose-binding protein complexed with an oligosac-charide. Nature, 360, 127-134.
[48] Zipfel, P.F. (2009) Complement and immune defense: from innate immunity to human diseases. Immunol Lett, 126, 1-7.
[49] Muta, T., Iwanaga, S. (1996) The role of hemolymph coagulation in innate immunity. Curr Opin Immunol, 8, 41-47.
[50] Montalto, M.C., Collard, C.D., Buras, J.A., Reenstra, W.R., McClaine, R., Gies, D.R., Rother, R.P., Stahl, G.L. (2001) A keratin pep-tide inhibits mannose-binding lectin. J Immunol, 166, 4148-4153.
[51] Holt, P., Holmskov, U., Thiel, S., Teisner, B., Hojrup, P., Jensenius, J.C. (1994) Purification and characterization of mannan-binding protein from mouse serum. Scand J Immunol, 39, 202-208.
[52] Fortpied, J., Vertommen, D., Van Schaftingen, E. (2010) Binding of mannose-binding lectin to fructosamines: a potential link be-tween hyperglycaemia and complement activation in diabetes. Diabetes Metab Res Rev, 26, 254-260.
[53] Park, K.H., Kurokawa, K., Zheng, L., Jung, D.J., Tateishi, K., Jin, J.O., Ha, N.C., Kang, H.J., Matsushita, M., Kwak, J.Y., Takahashi, K., Lee, B.L. (2010) Human serum mannose-binding lectin senses wall teichoic acid Glycopolymer of Staphylococcus aureus, which is restricted in infancy. J Biol Chem, 285, 27167-27175.
[54] Neth, O., Jack, D.L., Johnson, M., Klein, N.J., Turner, M.W. (2002) Enhancement of complement activation and opsonophagocytosis by complexes of mannose-binding lectin with mannose-binding lectin-associated serine protease after binding to Staphylococcus aureus. J Immunol, 169, 4430-4436.
[55] Topping, D.L., Mayes, P.A. (1971) The concentration of fructose, glucose and lactate in the splanchnic blood vessels of rats absorb-ing fructose. Nutr Metab, 13, 331-338.
[56] Kawasaki, T., Akanuma, H., Yamanouchi, T. (2002) Increased fructose concentrations in blood and urine in patients with diabetes. Diabetes Care, 25, 353-357.
[57] Muta, T., Iwanaga, S. (1996) Clotting and immune defense in Limulidae. Progress in Molecular & Subcellular Biology, 15, 154-189.
[58] Muller, S., Schaffer, T., Flogerzi, B., Seibold-Schmid, B., Schnider, J., Takahashi, K., Darfeuille-Michaud, A., Vazeille, E., Schoepfer, A.M., Seibold, F. (2010) Mannan-binding lectin deficiency results in unusual antibody production and excessive experimental colitis in response to mannose-expressing mild gut pathogens. Gut, 59, 1493-1500.
[59] Zuo, D.M., Zhang, L.Y., Lu, X., Liu, Y., Chen, Z.L. (2009) Protective role of mouse MBL-C on intestinal mucosa during Shigella flexneri invasion. Int Immunol, 21, 1125-1134.
[60] Sonnenburg, E.D., Zheng, H., Joglekar, P., Higginbottom, S.K., Firbank, S.J., Bolam, D.N., Sonnenburg, J.L. (2010) Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations. Cell, 141, 1241-1252.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.