Share This Article:

Optimization of Duty Ratio of Metallic Grating Arrays for Infrared Photodetectors

Abstract Full-Text HTML Download Download as PDF (Size:215KB) PP. 97-100
DOI: 10.4236/opj.2011.13016    3,753 Downloads   7,391 Views   Citations


Influence of duty ratio of metallic gratings applied in quantum well infrared photodetector (QWIP) with detection ranging from 3 μm to 5 μm was studied in this paper. The influence on longer enhanced wavelength working at infrared waveband was investigated. A relationship between the duty ratio and the enhanced peak intensity is given. Some results can be applied to optimize the enhanced efficiency of the metallic gratings.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

D. Liu, Y. Fu, L. Yang, B. Zhang, H. Li, K. Fu and M. Xiong, "Optimization of Duty Ratio of Metallic Grating Arrays for Infrared Photodetectors," Optics and Photonics Journal, Vol. 1 No. 3, 2011, pp. 97-100. doi: 10.4236/opj.2011.13016.


[1] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolf, “Extraordinary Optical Transmission through Sub-Wavelength Hole Arrays,” Nature, Vol. 391, No. 6668, 1998, pp. 667-669.
[2] W. L. Barnes, A. Dereux and T. W. Ebbesen, “Surface Plasmon Subwavelength Optics,” Nature, Vol. 424, No. 14, 2003, pp. 824-829.
[3] U. Schroter and D. Heitmann, “Surface-Plasmon-Enhan- Ced Transmission through Metalliclic Gratings,” Physical Review B, Vol. 58, No. 23, 1998, pp. 419-421.
[4] E. Popov, M. Nevière, S. Enoch and R. Reinisch, “Theory of Light Transmission through Subwavelength Periodic Hole Arrays,” Physical Review B, Vol. 62, No. 23, 2000, pp. 16100-16108. doi:10.1103/PhysRevB.62.16100
[5] A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno and Garcia-Vidal, “Evanescently Coupled Resonance in Surface Plasmon Enhanced Transmission,” Optics Communications, Vol. 200, No. 1-6, 2001, pp. 1-7.
[6] S. A. Maier, “Plasmonics: Fundamentals and Aplications,” Springer, Science+Business Media LLC, 2007.
[7] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modem Physics, Springer-Verlag, Berlin, Heidelberg, Vol. 2, p. l, 1988.
[8] H. Schneider and H. C. Liu, “Quantum Well Infrared Photodetectors,”Springer-Verlag, Berlin Heidelberg, 2007.
[9] Z.-B. Li, Y.-H. Yang, X.-T. Kong, W.-Y. Zhou and J.-G. Tian, “Enhanced Transmission through a Subwavelength Slit Surrounded by Periodic Dielectric Bars above the Metallic Surface,” Applied Optics, Vol. 10, 2008, Article ID: 095202.
[10] H. P. Paudel, K. Bayat, M. F. Baroughi, S. May and D. W. Galipeau, “Geometry Dependence of Field Enhancement in 2D Metalliclic Photonic Crystals,” Optics Express, Vol. 17, No. 24, 2009, pp. 22179-22189. doi:10.1364/OE.17.022179
[11] J. W. Cleary, G. Medhi, R. E. Peale and W. R. Buchwald, “Long-Wave Infrared Surface Plasmon Grating Coupler,” Applied Optics, Vol. 49, No. 16, 2010, pp. 3102-3109. doi:10.1364/AO.49.003102
[12] W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux and T.W. Ebbesen, “Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light through Periodic Arrays of Subwavelength Holes in a Metallic Film,” Physical Review Letters, Vol. 10, No. 92, 2004, Article ID: 107401.
[13] A. Benabbas, V. Halté and J.-Y. Bigot, “Analytical Model of the Optical Response of Periodically Structured Metalliclic Films,” Optics Express, Vol. 22, 2005, pp. 8730-8745. doi:10.1364/OPEX.13.008730
[14] L. Martin-Moreno and F. J. Garcia-Vidal, “Optical Transmission Through Circular Hole Arrays in Optically Thick Metallic Films,” Optics Express, Vol. 12, No. 16, 2004, pp. 3619-3628. doi:10.1364/OPEX.12.003619
[15] Y. Xie, A. R. Zakharian, J. V. Moloney and M. Mansuripur, “Transmission of Light through Periodic Arrays of Sub-Wavelength Slits in Metalliclic Hosts,” Optics Express, Vol. 14, No. 14, 2006, pp. 6400-6413. doi:10.1364/OE.14.006400
[16] Lumerical Solution Inc., “FDTD Solution, A Commercial Professional Software,” Lumerical Solution Inc., Vancouver, Canada.
[17] L. Salomon, F. Grillot, A. V. Zayats and F. de Fornel, “Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metallic Film,” Physical Review Letters, Vol. 86, 2001, pp. 1110-1113. doi:10.1103/PhysRevLett.86.1110
[18] H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission through Subwavelength Holes,” Physical Review B, Vol. 58, No. 11, 1998, pp. 6779-6782. doi:10.1103/PhysRevB.58.6779
[19] J. G. Rivas, C. Schotsch, P. H. Bolivar and H. Kurz, “Enhanced Transmission of Thz Radiation through Subwavelength Hole,” Physical Review B, Vol. 68, No. 20, 2003, Article ID: 201306.
[20] A. P. Hibbins, J. R. Sambles and C. R. Lawrence, “Gratingless Enhanced Microwave Transmission through a Subwavelength Aperture in a Thick Metallic Plate,” Applied Physics Letters, Vol. 84, No. 24, 2002, pp. 4661- 4663.
[21] M. Sarrazin, J.-P. Vigneron and J.-M. Vigoureux, “Role of Wood Anomalies in Optical Properties of Thin Metalliclic Films with a Bidimensional Array of Subwavelength Holes,” Physical Review B, Vol. 67, 2003, Article ID: 085415. doi:10.1103/PhysRevB.67.085415
[22] K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst and L. Kuipers, “Strong Influence of Hole Shape on Extraordinary Transmission through Periodic Arrays of Subwavelength Holes,” Physical Review Letters, Vol. 92, 2004, Article ID: 183901. doi:10.1103/PhysRevLett.92.183901
[23] A. Degiron and T. W. Ebbesen, “The Role of Localized Surface Plasmon Modes in the Enhanced Transmission of Periodic Subwavelength Apertures,” Journal of Optics A: Pure and Applied Optics, Vol. 7, No. 2, 2005, pp. S90- S95. doi:10.1088/1464-4258/7/2/012
[24] L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry and T. W. Ebbesen, “Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays,” Physical Review Letters, Vol. 86, No. 6, 2001, pp. 1114-1117. doi:10.1103/PhysRevLett.86.1114

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.