The weighted quadratic index of biodiversity for pairs of species: a generalization of Rao’s index

DOI: 10.4236/ns.2011.39104   PDF   HTML     4,349 Downloads   8,945 Views   Citations


The distribution of biodiversity at multiple sites of a region has been traditionally investigated through the additive partitioning of the regional biodiversity, called γ-diversity, into the average within-site biodiversity or α-diversity, and the biodiversity among sites, or β-diversity. The standard additive partitioning of diversity requires the use of a measure of diversity which is a concave function of the relative abundance of species, like the Shannon entropy or the Gini- Simpson index, for instance. When a phylogenetic distance between species is also taken into account, Rao’s quadratic index has been used as a measure of dissimilarity. Rao’s index, however, is not a concave function of the distribution of relative abundance of either individual species or pairs of species and, consequently, only some nonstandard additive partitionings of diversity have been given using this index. The objective of this paper is to show that the weighted quadratic index of biodiversity, a generalization of the weighted Gini-Simpson index to the pairs of species, is a concave function of the joint distribution of the relative abundance of pairs of species and, therefore, may be used in the standard additive partitioning of diversity instead of Rao’s index. The replication property of this new measure is also discussed.

Share and Cite:

Guiasu, R. and Guiasu, S. (2011) The weighted quadratic index of biodiversity for pairs of species: a generalization of Rao’s index. Natural Science, 3, 795-801. doi: 10.4236/ns.2011.39104.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Whittaker, R.H. (1972) Evolution and measurement of species diversity. Taxon, 21, 213-251. doi:10.2307/1218190
[2] Whittaker, R.H. (1977) Evolution of species diversity in land communities. In: Hecht, M.K. and Steere, B.W.N.C., Eds., Evolutionary Biology, Plenum Press, New York, 10, 1-67.
[3] MacArthur, R.H. (1965) Patterns of species diversity. Biological Review, 40, 510-533. doi:10.1111/j.1469-185X.1965.tb00815.x
[4] MacArthur, R.H. and Wilson, E.O. (1967) The theory of island biogeography. Princeton University Press, Princeton.
[5] Lande, R. (1996) Statistics and partitioning of species diversity and similarity among multiple communities. Oikos, 76, 5-13. doi:10.2307/3545743
[6] Shannon, C.E. (1948) A mathematical theory of communication. Bell System Technical Journal, 27, 379-423, 623-656.
[7] Gini, C. (1912) Variabilità e mutabilità. In: Pizzetti, E. and Salvemini, T., Eds., Rome: Libreria Eredi Virgilio Veschi, Memorie di Metodologica Statistica.
[8] Simpson, E.H. (1949) Measurement of diversity. Nature, 163, 688. doi:10.1038/163688a0
[9] Rao, C.R. (1982) Diversity and dissimilarity coefficients: a unified approach. Theoretical Population Biology, 21, 24-43. doi:10.1016/0040-5809(82)90004-1
[10] Jost, L. (2007) Partitioning diversity into independent alpha and beta components. Ecology, 88, 2427-2439. doi:10.1890/06-1736.1
[11] Jost, L. (2009) Mismeasuring biological diversity: Response to Hoffmann and Hoffmann. Ecological Economics, 68, 925-928. doi:10.1016/j.ecolecon.2008.10.015
[12] Jost, L., DeVries, P., Walla, T., Greeney, H., Chao, A. and Ricotta, C. (2010) Partitioning diversity for conservation analyses. Diversity and Distributions, 16, 65-76. doi:10.1111/j.1472-4642.2009.00626.x
[13] Guiasu, R.C. and Guiasu, S. (2010) The Rich-Gini- Simpson quadratic index of biodiversity. Natural Science, 2, 1130-1137. doi:10.4236/ns.2010.210140
[14] Guiasu, R.C. and Guiasu, S. (2010) New measures for comparing the species diversity found in two or more habitats. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 18, 691-720. doi:10.1142/S0218488510006763
[15] Pavoine, S., Ollier, S. and Pontier, D. (2005) Measuring diversity from dissimilarities with Rao’s quadratic entropy: Are any dissimilarities suitable? Theoretical Popu- lation Biology, 67, 231-239. doi:10.1016/j.tpb.2005.01.004
[16] Ricotta, C. (2005) Additive partitioning of Rao’s quad- ratic diversity: A hierarchical approach. Ecological Mod- elling, 183, 365-371. doi:10.1016/j.ecolmodel.2004.08.020
[17] Ricotta, C. and Szeidel, L. (2006) Towards a unifying approach to diversity measures: Bridging the gap between the Shannon entropy and Rao’s quadratic index. Theoretical Population Biology, 70, 237-243. doi:10.1016/j.tpb.2006.06.003
[18] Hardy, O.J. and Senterre, B. (2007) Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. Journal of Ecology, 95, 493-506. doi:10.1111/j.1365-2745.2007.01222.x
[19] Villéger, S. and Mouillot, D. (2008) Additive partitioning of diversity including species differences: A comment on Hardy and Senterre (2007). Journal of Ecology, 96, 845- 848.
[20] Hardy, O.J. and Jost, L. (2008) Interpreting measures of community phylogenetic structuring. Journal of Ecology, 96, 849-852. doi:10.1111/j.1365-2745.2008.01423.x
[21] Ricotta, C. and Szeidel, L. (2009) Diversity partitioning of Rao’s quadratic entropy. Theoretical Population Biology, 76, 299-302. doi:10.1016/j.tpb.2009.10.001
[22] Sherwin, W.B. (2010) Entropy and information approaches to genetic diversity and its expression: Genomic geography. Entropy, 12, 1765-1798. doi:10.3390/e12071765
[23] De Bello, F., Lavergne, S., Meynard, C.N., Lep?, J. and Thuiller, W. (2010) The partitioning of diversity: Showing Theseus a way out of the labyrinth. Journal of Vegetation Science, 21, 992-1000. doi:10.1111/j.1654-1103.2010.01195.x
[24] Tuomisto, H. (2010) A diversity of beta diversities: Straightening up a concept gone awry. Part 1. Defining beta diversity as a function of alpha and gamma diversity. Ecography, 33, 2-22. doi:10.1111/j.1600-0587.2009.05880.x
[25] Tuomisto, H. (2010) A diversity of beta diversities: Strai- ghtening up a concept gone awry. Part 2. Quantifying beta diversity and related phenomena. Ecography, 33, 23- 45. doi:10.1111/j.1600-0587.2009.06148.x
[26] Rényi, A. (1961) On measures of entropy and information. In: Neyman, J., Ed., 4th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, 1, 547-561.
[27] Hill, M. (1973) Diversity and evenness. A unifying notation and its consequences. Ecology, 88, 2427-2439.
[28] Jost, L. (2006) Entropy and diversity. Oikos, 113, 363- 375. doi:10.1111/j.2006.0030-1299.14714.x
[29] Chao, A., Chiu, C.H. and Jost, L. (2010) Phylogenetic diversity measures based on Hill numbers. Phylosophical Transactions of the Royal Society Biological Sciences, 365, 3599-3609. doi:10.1098/rstb.2010.0272

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.