Acoustic Wave Propagation in Nanocrystalline RuCo Alloys

DOI: 10.4236/ampc.2011.12003   PDF   HTML     104,680 Downloads   109,016 Views   Citations


The ultrasonic properties like elastic constant, ultrasonic velocity in the hexagonal structured nanocrystalline RuCo alloys have been studied along unique axis at room temperature. The second and third order elastic constants (SOEC & TOEC) have been calculated for these alloys using Lennard-Jones potential. The orientation dependent ultrasonic velocity has been also evaluated to study the anisotropic behaviour of these alloys. The velocities VL and VS1 have minima and maxima, respectively at 45° with unique axis of the crystal, while VS2 increases with the angle from unique axis. The inconsistent behaviour of angle-dependent velocities is associated to the action of second order elastic constants. Debye average ultrasonic velocities of these alloys are increasing with the angle and has maximum at 55° with unique axis at room temperature. Hence, when a ultrasonic wave travels at 55° with unique axis of these alloys, then the average ultrasonic velocity is found to be maximum. Elastic constants and density are mainly the affecting factor for anomalous behaviour of ultrasonic velocity in these alloys. The mechanical and ultrasonic properties of Co0.75Ru0.25 alloy will be better than the other compounds due to their high SOEC, ultrasonic velocity and low ultrasonic attenuation. Co0.75Ru0.25 alloy is more suitable for industrial and other uses, as it has the highest elastic constants and lowest ultrasonic attenuation in comparison to other of these alloys. The results of this investigation are discussed in correlation with other known thermophysical properties.

Share and Cite:

P. Yadawa, D. Singh, D. Pandey, G. Mishra and R. Yadav, "Acoustic Wave Propagation in Nanocrystalline RuCo Alloys," Advances in Materials Physics and Chemistry, Vol. 1 No. 2, 2011, pp. 14-19. doi: 10.4236/ampc.2011.12003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. Y. Huang, Y. K. Wu and H. Q. Ye, “Response to Com-ment on Phase Transformation of Cobalt Induced by Ball Milling,” Applied Physics Letters, Vol. 67, No. 13, 1995, pp. 1944-1945. doi:10.1063/1.114577
[2] J. Crangle and W. R. Scott, “Dilute Ferromagnetic Alloys,” Journal of Applied Physics, Vol. 36, No. 3, 1965, pp. 921-928. doi:10.1063/1.1714264
[3] J. Neuwenhuys, “Magnetic Behaviour of Cobalt, Iron and Manganese Dissolved in Palladium,” Advances in Physics, Vol. 24, No. 4, 1975, pp. 515-591. doi:10.1080/00018737500101461
[4] P. H. Dederich, R. Zeller, H. Akai and H. Ebert, “Ab-Initio Calculations of the Electronic Structure of Impurities and Alloys of Ferromagnetic Transition Metals,” Journal of Magnetism and Magnetic Materials, Vol. 100, No. 1-3, 1991, pp. 241-260. doi:10.1016/0304-8853(91)90823-S
[5] S. S. P. Parkin, N. More and K. P. Roche, “Ab-Initio Cal-culations of the Electronic Structure of Impurities and Alloys of Ferromagnetic Transition Metals,” Physical Review Letters, Vol. 64, 1990, pp. 2304-2307. doi:10.1103/PhysRevLett.64.2304
[6] Y. Y. Huang, G. P. Felcher and S. S. P. Parkin, “AntiFer-romagnetic and Ferromagnetic Order in Co/Ru Multilay-ers,” Journal of Magnetism and Magnetic Materials, Vol. 99, No. 1-3, 1991, pp. L31-L38. doi:10.1016/0304-8853(91)90044-B
[7] S. S. P. Parkin, K. P. Roche, M. G. Samant, P. M. Rice, R. B. Beyers, R. E. Scheueriein, E. J. O’Sullivan, S. L. Brown, J. Bucchigano, D. W. Abraham, Y. Lu, M. Rooks, P. L. Trouilloud, R. A. Warner and W. J. Gallagher, “Exchange-Biased Magnetic Tunnel Junctions and Ap-plication to Nonvolatile Magnetic Random Access Mem-ory,” Journal of Applied Physics, Vol. 85, No. 8, 1999, pp. 5828-5833. doi:10.1063/1.369932
[8] W. Koester and E. Horn, “Characterization of Cobalt, Rhenium, Ruthenium, Osmium, Rhodium and Iridium,” Journal of Materials Chemistry, Vol. 43, No. 12, 1952, pp. 444-449.
[9] T. M. Keller and S. B. Qadri, “Ferrocenylethynylbenzenes as Precursors to in Situ Synthesis of Carbon Nanotube and Fe Nanoparticle Compositions,” Chemistry of Materials, Vol. 16, No. 6, 2004, pp.1091-1097. doi:10.1021/cm030624e
[10] S. B. Qadri, T. M. Keller, M. Laskoski, C. A. Little, M. S. Osofsky and H. R. Khan, “Structural and Magnetic Prop-erties of Nanocrystalline RuCo Alloys,” Applied Physics Letters, Vol. 91, 2007, pp. 214101: (1-3).
[11] D. Singh and P. K. Yadawa, “Effect of Platinum Addition to Coinage Metals on Their Ultrasonic Properties,” Pla-tinum Metals Review, Vol. 54, No. 3, 2010, pp. 169-176. doi:10.1595/147106710X500602
[12] P. K. Yadawa, “Ultrasonic Wave Propagation in Cadmium Chalcogenides Compounds,” Multidiscipline Modeling in Materials and Structures, Vol. 7, No. 1, 2011, pp. 63-72. doi:10.1108/15736101111141449
[13] A. K. Yadav, R. R. Yadav, D. K. Pandey and D. Singh, “Ultrasonic Study of Fission Products Precipitated in the Nuclear Fuel,” Materials Letters, Vol. 62, 2008, pp. 3258-3261. doi:10.1016/j.matlet.2008.02.036
[14] C. Oligschleger , R. O. Jones, S. M. Reimann and H. R. Schober, “Model Interatomic Potential for Simulations in Selenium,” Physical Review B, Vol. 53, 1996, pp. 6165-6173. doi:10.1103/PhysRevB.53.6165
[15] P. K. Yadawa, “Acoustic Wave Propagation in Ni3R (R = Mo, Nb, Ta) Compounds,” Pramana, Vol. 76, No. 4, 2011, pp. 613-619. doi:10.1007/s12043-011-0066-7
[16] P. K. Yadawa, “Ultrasonic Characterization of Ceramic Material Titanium Diboride,” Ceramics-Silikaty, Vol. 55, No. 2, 2011, pp. 127-133.
[17] D. K. Pandey, D. Singh and P. K. Yadawa, “Ultrasonic Study of Osmium and Ruthenium,” Platinum Metals Re-view, Vol. 9, No. 2, 2009, pp. 91-97. doi:10.1595/147106709X430927
[18] D. K. Pandey, P. K. Yadawa and R. R. Yadav, “Ultra-sonic Properties of Hexagonal ZnS at Nanoscale,” Mate-rials Letters, Vol. 61, 2007, pp. 5194-5198. doi:10.1016/j.matlet.2007.04.028
[19] G. R. Speich, A. J. Schwoeble and W. C. Leslie, “Elastic Constants of Binary Iron-Base Alloys,” Metallurgical and Materials Transctions B, Vol. 3, 1972, pp. 2031-2037.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.