Degradation of Diclofenac in Molecularly Imprinted Polymer Submicron Particles by UV Light Irradiation and HCl Acid Treatment
Mohammad Hassanzadeh-Khayyat, Edward P. C. Lai, Kerim Kollu, Banu Ormeci
DOI: 10.4236/jwarp.2011.39074   PDF    HTML   XML   6,124 Downloads   12,980 Views   Citations


A new molecularly imprinted polymer (MIP) was synthesized by precipitation polymerization using diclofenac (DFC) as a template. Binding characteristics of the MIP particles were evaluated by equilibrium binding experiments. DFC-MIP aqueous suspension and non-imprinted polymer (NIP) suspension were exposed to monochromatic UV light (253.7 nm) from low-pressure mercury lamps. UV-visible spectrophotometry (especially absorbance at 276 nm) showed that the DFC inside MIP particles degraded completely. After DFC-MIP suspension exposure to UV light the particles were completely regenerated after washing with water at least six times. The regenerated MIP particles rebounded considerable amount of DFC (approximately 88% removal of 44 ppm DFC). The stability of DFC was examined in the presence of various concentrations of hydrochloric acid (0.025 to 125 mM). Experimental results showed that degradation of DFC was efficient, depending on the acid concentration as well as the treatment time. However, there was no re-binding of DFC by the MIP particles after HCl treatment (and DDW washing) when exposed to DFC for 24 hours.

Share and Cite:

M. Hassanzadeh-Khayyat, E. Lai, K. Kollu and B. Ormeci, "Degradation of Diclofenac in Molecularly Imprinted Polymer Submicron Particles by UV Light Irradiation and HCl Acid Treatment," Journal of Water Resource and Protection, Vol. 3 No. 9, 2011, pp. 643-654. doi: 10.4236/jwarp.2011.39074.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Mompelat, B. Le Bot and O. Thomas, “Occurrence and Fate of Pharmaceutical Products and By-products, from Resource to Drinking Water,” Environment International, Vol. 35, No. 5, 2009, pp. 803-814. doi:10.1016/j.envint.2008.10.008
[2] M. Letzel, G. Metzner and T. Letzel, “Exposure Assessment of the Pharmaceutical Diclofenac Based on Long-Term Measurements of the Aquatic Input,” Environment International, Vol. 35, No. 1, 2009, pp. 363-368.
[3] X. F. Zhou, C. M. Dai, Y. L. Zhang, R. Surampalli and T. Zhang, “A Preliminary Study on the Occurrence and Behavior of Carbamazepine (CBZ) in Aquatic Environment of Yangtze River Delta, China,” Environmental Monitoring and Assessmen, Vol. 173, 2010, pp. 45-53.
[4] British Pharmacopoeia, International Ed. HMSO Publication, London, Vol. I, 2004, p. 469.
[5] The United State Pharmacopoeia, 29th Ed. United States Pharmacopoeial Convention, Inc., Rockville, MD 206, 2005, p. 683.
[6] Indian Pharmacopoeia, 6th Ed. Government of India, The Controller of Publications, New Delhi, Vol. III, 2010, p. 2213.
[8] M. Janbroers, “Review of the Toxicology, Pharmacodynamics and Pharmacokinetics of Thiocolchicoside, a GABA-Agonist Muscle Relaxant with Antinflammatory and Analgesic Action,” Acta Ther., Vol. 13, 1987, pp. 221-225.
[9] V. Naddeo, V. Belgiorno, D. Ricco and D. Kassinos, “Degradation of Diclofenac during Sonolysis, Ozonation and Their Simultaneous Application,” Ultrasonics Sonochemistry, Vol. 16, No. 6, 2009, pp. 790-794. doi:10.1016/j.ultsonch.2009.03.003
[10] D. Stülten, S. Zühlke, M. Lamsh?ft and M. Spiteller, “Occurrence of Diclofenac and Selected Metabolites in Sewage Effluents,” Science of the Total Environment, Vol. 405, No. 1-3, 2008, pp. 301-310.
[11] M. Letzel, G. Metzner and T. Letzel, “Exposure Assessment of the Pharmaceutical Diclofenac Based on Long-Term Measurements of the Aquatic Input,” Environment International, Vol. 35, No. 2, 2009, pp. 363-368.
[12] H. Ericson, G. Thorsén and L. Kumblad, “Physiological Effects of Diclofenac, Ibuprofen and Propranolol on Baltic Sea Blue Mussels,” Aquatic Toxicology, Vol. 99, No. 2, 2010, pp. 223-231. doi:10.1016/j.aquatox.2010.04.017
[13] G. Swan, V. Naidoo, R. Cuthbert, R. E. Green, D. J. Pain, D. Swarup, V. Prakash and K. Wolter, “Removing the Threat of Diclofenac to Critically Endangered Asian Vultures,” PLoS Biology, Vol. 4, No. 3, 2006, p. e66. doi:10.1371/journal.pbio.0040066
[14] V. Naidoo and G. E. Swan, “Diclofenac Toxicity in Gyps Vulture is Associated with Decreased Uric Acid Excretion and Not Renal Portal Vasoconstriction,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, Vol. 149, No. 3, 2009, pp. 269-274. doi:10.1016/j.cbpc.2008.07.014
[15] P. Calza, V. A. Sakkas, C. Medana, C. Baiocchi, A. Dimou, E. Pelizzetti and T. Albanis, “Photocatalytic Degradation Study of Diclofenac over Aqueous TiO2 Suspensions,” Applied Catalysis B: Environmental, Vol. 67, No. 3-4, 2006, pp. 197-205. doi:10.1016/j.apcatb.2006.04.021
[16] J. Hofmann, U. Freier, M. Wecks and S. Hohmann, “Degradation of Diclofenac in Water by Heterogeneous Catalytic Oxidation with H2O2,” Applied Catalysis B: Environmental, Vol. 70, No. 1-4, 2007, pp. 447-451. doi:10.1016/j.apcatb.2005.11.023
[17] A. Ghauch, H. Abou Assi and S. Bdeir, “Aqueous Removal of Diclofenac by Plated Elemental Iron: Bimetallic Systems,” Journal of Hazardous Materials, Vol. 182, No. 1-3, 2010, pp. 64-74. doi:10.1016/j.jhazmat.2010.05.139
[18] A. Achilleosa, E. Hapeshia, P. X. Nikolaos, D. Mantzavinosb and D. Fatta-Kassinosa, “Factors Affecting Diclofenac Decomposition in Water by UV-A/TiO2 Photocatalysis,” Chemical Engineering Journal, Vol. 161, No. 1-2, 2010, pp. 53-59. doi:10.1016/j.cej.2010.04.020
[19] G. Laera, M. N. Chong, B. Jin and A. Lopez, “An Integrated MBR–TiO2 Photocatalysis Process for the Removal of Carbamazepine from Simulated Pharmaceutical Industrial Effluent,” Bioresource Technology, Vol. 102, No. 13, 2011, pp. 7012-7015. doi:10.1016/j.biortech.2011.04.056
[20] J. Madhavan, P.S.S. Kumar, S. Anandan, M. Zhou, F. Grieser and M. Ashokkumar, “Ultrasound Assisted Photocatalytic Degradation of Diclofenac in an Aqueous Environment,” Chemosphere, Vol. 80, 2010, pp. 747-752.
[21] F. R. Slater, A. C. Singer, S. Turner, J. J. Barr and P. L. Bond, “Pandemic Pharmaceutical Dosing Effects on Wastewater Treatment,” FEMS Microbiology Letters, Vol. 315, No. 1, 2011, pp. 17-22. doi:10.1111/j.1574-6968.2010.02163.x
[22] C. Zwiener and F. H. Frimmel, “Short-Term Tests with a Pilot Sewage Plant and Biofilm Reactors for the Biological Degradation of the Pharmaceutical Compounds Clofibric Acid, Ibuprofen, and Diclofenac,” The Science of the Total Environment, Vol. 309, 1-3, 2003, pp. 201-211. doi:10.1016/S0048-9697(03)00002-0
[23] E. Marco-Urrea, M. Pérez-Trujillo, C. Cruz-Morató, G. Caminal and T. Vicent, “Degradation of the Drug Sodium Diclofenac by Trametes Versicolor Pellets and Identification of Some Intermediates by NMR,” Journal of Hazardous Materials, Vol. 176, No. 1-3, 2010, pp. 836-842. doi:10.1016/j.jhazmat.2009.11.112
[24] Y. Zhang and S. U. Gei?en, “In Vitro Degradation of Carbamazepine and Diclofenac by Crude Lignin Peroxidase,” Journal of Hazardous Materials, Vol. 176, No. 1-3, 2010, pp. 1089-1092. doi:10.1016/j.jhazmat.2009.10.133
[25] V. Naddeo, V. Belgiorno, D. Kassinos, D. Mantzavinos and D. Meric, “Ultrasonic Degradation, Mineralization and Detoxification of Diclofenac in Water: Optimization of Operating Parameters,” Ultrasonics Sonochemistry, Vol. 17, No. 1, 2010, pp. 179-185. doi:10.1016/j.ultsonch.2009.04.003
[26] J. Hartmann, P. Bartels, U. Mau, M. Witter, W. V. Tümpling, J. Hofmann and E. Nietzschmann, “Degradation of the Drug Diclofenac in Water by Sonolysis in Presence of Catalysts,” Chemosphere, Vol. 70, No. 3, 2008, pp. 453- 461. doi:10.1016/j.chemosphere.2007.06.063
[27] G. T. Güyer and N. H. Ince, “Degradation of Diclofenac in Water by Homogeneous and Heterogeneous Sonolysis,” Ultrasonics Sonochemistry, Vol. 18, No. 1, 2011, pp. 114-119. doi:10.1016/j.ultsonch.2010.03.008
[28] N. J. Mamouzelos, C. S. Proikakis, P. A. Tarantili and A. G. Andreopoulos, “Release of Propranolol and Diclofenac from Low Molecular Weight DL-Poly(Lactic Acid),” Journal of Biomaterials Applications, Vol. 16, No. 3, 2002, pp. 177-190.
[29] M. D. Kurkuri and T. M. Aminabhavi, “Poly(Vinyl Alcohol) and Poly(Acrylic Acid) Sequential Interpenetrating Network pH-Sensitive Microspheres for the Delivery of Diclofenac Sodium to the Intestine,” Journal of Controlled Release, Vol. 96, No. 1, 2004, pp. 9-20. doi:10.1016/j.jconrel.2003.12.025
[30] C. M. Dai, S. U. Geissen, Y. L. Zhang, Y. J. Zhang and X. F. Zhou, “Selective Removal of Diclofenac from Contaminated Water Using Molecularly Imprinted Polymer Microspheres,” Environmental Pollution, Vol. 159, No. 6, 2011, pp. 1660-1666. doi:10.1016/j.envpol.2011.02.041
[31] S. Wei, A. Molinelli and B. Mizaikoff, “Molecularly Imprinted Micro and Nanospheres for the Selective Recognition of 17β-Estradiol,” Biosensors and Bioelectronics, Vol. 21, No. 10, 2006, pp. 1943-1951. doi:10.1016/j.bios.2005.09.017
[32] S. S. Qian, M. Donnelly, D. C. Schmelling, M. Messner, K. G. Linden and C. Cotton, “Ultraviolet Light Inactivation of Protozoa in Drinking Water: A Bayesian meta- analysis,” Water Research, Vol. 38, No. 2, 2004, pp. 317-326. doi:10.1016/j.watres.2003.10.007
[33] H. J. Morowitz, “The Action of Ultraviolet Light and Ionizing Radiation on Spores of Bacillus Subtilis. I. The Ultraviolet Lethal Action, Mutation Action and Absorption Spectra,” Archives of Biochemistry and Biophysics, Vol. 47, 2, 1953, pp. 325-337. doi:10.1016/0003-9861(53)90470-6
[34] H. P. Schuchmann, C. Von Sonntag and R. Srinivasan, “The UV Photolysis (λ = 254 and 185/254 nm) of Cyclohexene in Oxygen-Saturated and Oxygen-Free Cyclopentane Solution,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 45, 1988, p. 49. doi:10.1016/1010-6030(88)80115-1
[35] M.C. Gaudiano, L. Valvo, P. Bertocchi and L. Manna, “RP-HPLC Study of the Degradation of Diclofenac and Piroxicam in the Presence of Hydroxyl Radicals,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 32, No. 4, 2003, pp. 151-158. doi:10.1016/S0731-7085(03)00058-X
[36] R. Hájková, P. Solich, M. Pospíilová and J. Icha, “Simultaneous Determination of Methylparaben, Propylparaben, Sodium Diclofenac and Its Degradation Product in a Topical Emulgel by Reversed-Phase Liquid Chromatography,” Analytica Chimica Acta, Vol. 467, No. 1-2, 2002, pp. 91-96.
[37] J. Hofmann, U. Freier, M. Wecks and S. Hohmann, “Degradation of Diclofenac in Water by Heterogeneous Catalytic Oxidation with H2O2,” Applied Catalysis B: Environmental, Vol. 70, No. 1-4, 2007, pp. 447-451. doi:10.1016/j.apcatb.2005.11.023
[38] Q. Yu, S. Deng and G. Yu, “Selective Removal of Perfluorooctane Sulfonate from Aqueous Solution Using Chitosan-Based Molecularly Imprinted Polymer Adsorbents,” Water Research, Vol. 42, No. 12, 2008, pp. 3089-3097. doi:10.1016/j.watres.2008.02.024
[39] M. Cleuvers, “Mixture Toxicity of the Anti-inflammatory Drugs Diclofenac, Ibuprofen, Naproxen, and Acetylsalicylic Acid,” Ecotoxicology and Environmental Safety, Vol. 59, No. 3, 2004, pp. 309-315. doi:10.1016/S0147-6513(03)00141-6
[40] B. Ferrari, N. Paxéus, R. L. Giudice, A. Pollio and J. Garric, “Ecotoxicological Impact of Pharmaceuticals Found in Treated Wastewaters: Study of Carbamazepine, Clofibric Acid, and Diclofenac,” Ecotoxicology and Environmental Safety, Vol. 55, No. 3, 2003, pp. 359-370. doi:10.1016/S0147-6513(02)00082-9
[41] S.C. Lee and H. Chen “Preparation of Sol-Gel Molecularly Imprinted Polymer Based on Tetraethoxysilane for Recognize Sulfonamides,” 2009.
[42] M. E. Abdel-Hamid, L. Novotny and H. Hamza, “Determination of Diclofenac Sodium, Flufenamic Acid, Indomethacin and Ketoprofen by LC-APCI-MS,” Journal of Pharmaceutical and Biomedical Analysis, Vol. 24, No. 4, 2001, pp. 587-594. doi:10.1016/S0731-7085(00)00444-1
[43] R.W. Sparidans, J. S. Lagas, A. H. Schinkel, J. H. M. Schellens and J. H. Beijnen, “Liquid Chromatography– Tandem Mass Spectrometric Assay for Diclofenac and Three Primary Metabolites in Mouse Plasma,” Journal of Chromatography B, Vol. 872, No. 1-2, 2008, pp. 77-82. doi:10.1016/j.jchromb.2008.07.012
[44] T. Kosjek, E. Heath, S. Pérez, M. Petrovi? and D. Barceló, “Metabolism Studies of Diclofenac and Clofibric Acid in Activated Sludge Bioreactors Using Liquid Chromatography with Quadrupole—Time-of-Flight Mass Spectrometry,” Journal of Hydrology, Vol. 372, 2009, p. 109.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.