Share This Article:

Synthesis and Characterization of (Ru-Sn)O2 Nanoparticles for Supercapacitors

Abstract Full-Text HTML Download Download as PDF (Size:781KB) PP. 1175-1179
DOI: 10.4236/msa.2011.29158    6,184 Downloads   11,808 Views   Citations

ABSTRACT

The electrode materials SnO2, RuO2 and (Sn-Ru)O2 were synthesized through precipitation method from SnCl2·2H2O and RuCl2·2H2O solutions. The obtained nano-sized pristine products were characterized using X-ray diffractometry, Scanning Electron Microscopy (SEM), differential scanning calorimetry (DSC)-thermogravimetric analysis (TGA) and cyclic voltammetry (CV). The Debye–Scherrer formula was used to estimate the average size of the nanoparticles SnO2 (36 nm), RuO2(24 nm), and (Sn-Ru)O2 (19 nm). Electrochemical studies were carried out to examine the capacitance of SnO2, RuO2, (Sn-Ru)O2 electrodes in 0.5 M H2SO4 at various scan rates. The estimated electrode capacitance was de-termined to decrease with an increase of scan rate.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

V. Channu, R. Holze, S. Sr., E. Jr., Q. Williams and R. Kalluru, "Synthesis and Characterization of (Ru-Sn)O2 Nanoparticles for Supercapacitors," Materials Sciences and Applications, Vol. 2 No. 9, 2011, pp. 1175-1179. doi: 10.4236/msa.2011.29158.

References

[1] B. E. Conway, “Transition from ‘Supercapacitor’ to ‘Battery’ Behavior in Electrochemical Energy Storage,” Journal of the Electrochemical Society, Vol. 138, No. 6, 1991, pp. 1539-1548. doi:10.1149/1.2085829
[2] S. Trasatti and P. Kurzweil, “Electrochemical Supercapacitors as Versatile Energy Stores,” Platinum Metals Review, Vol. 38, 1994, pp. 46-56.
[3] S. Sarangapani, B. V. Tilak and C. P. Chen, “Materials for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 143, 1996, pp. 3791-3799. doi:10.1149/1.1837291
[4] J. M. Miller, B. Dunn, T. D. Tran and R. W. Pekala, “Deposi-tion of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes,” Journal of the Electrochemical Society, Vol. 144, No. 12, 1997, pp. L309-L311. doi:10.1149/1.1838142
[5] J. P. Zheng, P. J. Cygan and T. R. Zow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 142, 1995, pp. 2699- 2703. doi:10.1149/1.2050077
[6] K.C. Liu and M. A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 143, No. 1, 1996, pp. 124-130. doi:10.1149/1.1836396
[7] V. Srinivasan and J. W. Weinder, “An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 144, No. 8, 1997, pp. L210-L213. doi:10.1149/1.1837859
[8] V. Srinivasan and J. W. Weinder, “Studies on the Capacitance of Nickel Oxide Films: Effect of Heating Temperature and Electrolyte Concentration,” Journal of the Electrochemical Society, Vol. 147, No. 3, 2000, pp. 880- 885. doi:10.1149/1.1393286
[9] C. Lin, J. A. Ritter and B. N. Popov, “Characterization of Sol-Gel-Derived Cobalt Oxide Xerogels as Electrochemical Capacitors,” Journal of the Electrochemical Society, Vol. 145, No. 12, 1998, pp. 4097-4103. doi:10.1149/1.1838920
[10] S. C. Pang, M. A. Anderson and T. W. Chapman, “Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide,” Journal of the Electrochemical Society, Vol.147, No. 2, 2000, pp. 444- 450. doi:10.1149/1.1393216
[11] S. C. Pang and M. A. Anderson, “Novel Electrode materials for Electrochemical Capacitors: Part II. Material Characterization of Sol-Gel-Derived and Electrodeposited Manganese Dioxide Thin Films,” Journal of Materials Research, Vol. 15, No. 10, 2000, pp. 2096-2106. doi:10.1557/JMR.2000.0302
[12] X. U. Jeong and A. Manthiram, “Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes,” Journal of the Electrochemical Society, Vol. 149, No. 11, 2002, pp. A1419-A1422. doi:10.1149/1.1511188
[13] N.-L. Wu and S.-Y. Wang, “Preparation of Tin Oxide Gels with Versatile Pore Structures,” Journal of Materials Science, Vol. 34, No. 12, 1999, pp. 2807-2812. doi:10.1023/A:1004618915020
[14] C.-C. Hu, K.-H. Chang and C.-C. Wang, “Two-Step Hydrothermal Synthesis of Ru-Sn Oxide Composites for Electrochemical Supercapacitors,” Electrochimica Acta, Vol. 52, No. 3, 2007, pp. 4411-4418. doi:10.1016/j.electacta.2006.12.022
[15] J. Zhu, Z. Lu, S. T. Aruna, D. Aurbach and A. Gedanken, “Sonochemical Synthesis of SnO2 Nanoparticles and Their Preliminary Study as Li Insertion Electrodes,” Chemistry of Materials, Vol. 12, No. 9, 2000, pp. 2557- 2566. doi:10.1021/cm990683l
[16] R. K. Selvan, I. Perelshtein, N. Perkas and A. Gedanken, “Synthesis of Hexagonal-Shaped SnO2 Nanocrystals and SnO2@C Nanocomposites for Electrochemical Redox Supercapacitors,” The Journal of Physical Chemistry C, Vol. 112, No. 6, 2008, pp. 1825-1830. doi:10.1021/jp076995q
[17] C.-C. Hu and K.-H. Chang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors: Effects of Codepositing Iridium Oxide,” Electrochimica Acta, Vol. 45, No. 17, 2000, pp. 2685- 2696. doi:10.1016/S0013-4686(00)00386-8
[18] K.-H. Chang and C.-C. Hu, “Hydrothermal Synthesis of Binary Ru-Ti Oxides with Excellent Performances for Supercapacitors,” Electrochimica Acta, Vol. 52, No. 4, 2006, pp. 1749-1757. doi:10.1016/j.electacta.2006.01.076
[19] C.-C. Hu and K.-H. Chang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Supercapacitors: Effects of the Chloride Precursor Transformation,” Journal of Power Sources, Vol. 112, No. 2, 2002, pp. 401-409. doi:10.1016/S0378-7753(02)00397-X
[20] C.-C. Hu, H.-Yi. Guo, K-H. Chang and C.-C. Huang, “Anodic Composite Deposition of RuO2?xH2O-TiO2 for Electrochemical Supercapacitors,” Electrochemistry Communications, Vol. 11, No. 8, 2009, pp. 1631-1634. doi:10.1016/j.elecom.2009.06.014
[21] J. Ribeiro and A. R. De Andrade, “Characterization of RuO2-Ta2O5 Coated Titanium Electrode,” Journal of the Electrochemical Society, Vol. 151, No. 10, 2004, pp. D106-D112. doi:10.1149/1.1787174
[22] C.-C. Hu, Yi-L. Yang and T.-C. Lee, “Microwave-As- sisted Hydrothermal Synthesis of RuO2?xH2O-TiO2 Nanocomposites for High Power Supercapacitors,” Electrochemical and Solid-State Letters, Vol. 13, No. 12, 2010, pp. A173-A176. doi:10.1149/1.3486437
[23] N.-L. Wu, “Nanocrystalline Oxide Supercapacitors,” Materials Chemistry and Physics, Vol. 75, No. 1, 2002, pp. 6-11.
[24] C. C. Hu, C. C. Wang and K. H. Chang, “A Comparison Study of the Capacitive Behavior for Sol-Gel-Derived and Co-annealed Ruthenium-Tin Oxide Composites,” Electrochimica Acta, Vol. 52, No. 7, 2007, pp. 2691-2700. doi:10.1016/j.electacta.2006.09.026

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.