Cation Distribution in Co0.7Me0.3Fe2O4 (Me = Zn, Ni and Mn)

DOI: 10.4236/jmp.2011.29132   PDF   HTML     5,757 Downloads   10,326 Views   Citations


Co0.7Me0.3Fe2O4 (Me = Zn, Ni and Mn) were synthesized through co-precipitation method. Cationic distribution for these ferrites was proposed on the basis of magnetization measurements and available occupancy of the substituent ions into the spinel lattice. Theoretical lattice constant calculations confirm the proposed cationic distributions were the correct ones.

Share and Cite:

A. Kumar, P. Rao, M. Varma, G. Choudary and K. Rao, "Cation Distribution in Co0.7Me0.3Fe2O4 (Me = Zn, Ni and Mn)," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1083-1087. doi: 10.4236/jmp.2011.29132.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. A. Petitt and D. W. Forester “Mossbauer Study of Co-balt-Zinc Ferrites,” Physical Review B, Vol. 4, No. 11, 1971, pp. 3912-3923. doi:10.1103/PhysRevB.4.3912
[2] M. K. Fayek, A. A. Bahgat, Y. M. Abbas and L. Moberg, “Neutron Diffraction and Mossbauer Effect Study on a Cobalt Substituted Zinc Ferrite,” Journal of Physics C: Solid State Physics, Vol. 15, No. 11, 1982, p. 2509. doi:10.1088/0022-3719/15/11/027
[3] K. Krieble, T. Schaeffer, J. A. Paulsen, A. P. Ring, C. C. H. Lo and J. E. Snyder, “Mossbauer Spectroscopy Investigation of Mn-Substituted Co-ferrite (CoMnFeO),” Journal of Applied Physics, Vol. 97, 2005, p. 10F101.
[4] K. S. Rao, A. M. Kumar, M. C. Varma, G. Choudary and K. H. Rao “Cation Distribution of Titanium Substituted Cobalt Fer-rites,” Journal of Alloys and Compounds, Vol. 488, No. 1, 2010, pp. L6-L9. doi:10.1016/j.jallcom.2009.08.086
[5] R. F. Soohoo, “Theory and Applications of Ferrites,” Prentice Hall, Englewood Cliffs, 1960.
[6] A. D. Sheikh and V. L. Mathe, “Anamolous Electrical Properties of Nanocrystalline Ni-Zn Ferrite,” Journal of Materials Science, Vol. 43, 2008, pp. 2018-2025. doi:10.1007/s10853-007-2302-6
[7] B. Baruwati, R. K. Rana and S. V. Manorama, “Further Insights in the Conductivity Behaviour of Nanocrystalline NiFe2O4,” Journal of Applied Physics, Vol. 101, No. 1, 2007, Article ID: 014302. doi:10.1063/1.2404772
[8] J. B. Nelson and D. P. Riley, “The Thermal Expansion of Gra-phite from 15?C to 800?C,” Proceedings of the Physical Society, Vol. 57, No. 6, 1945, pp. 477-486. doi:10.1088/0959-5309/57/6/303
[9] J. M. Hastings and L. M. Corliss, “An Antiferromagnetic Tran-sition in Zinc Ferrite,” Physical Reviews, Vol. 102, No. 6, 1956, pp. 1460-1463. doi:10.1103/PhysRev.102.1460
[10] G. A. Sawatzky, F. Van Der Woude and A. H. Morrish “Mossbauer study Several Ferromagnetic Spinel,” Physical Reviews, Vol. 187, No. 2, 1969, p. 747-757. doi:10.1103/PhysRev.187.747
[11] E. Prince, “Neutron Diffraction Observation of Heat Treatment in Cobalt Ferrite,” Physical Reviews, Vol. 102, No. 3, 1956, pp. 674-676. doi:10.1103/PhysRev.102.674
[12] G. V. Duong, N. Hanh, D. V. Linh, R. Groessinger, P .Weinberger, E. Schafler and M. Zehetbauer, “Monodispersed Nanocrystalline Co1?xZnxFe2O4 Particles by Forced Hydrolysis: Synthesis and Characterization,” Journal of Magnetism and Magnetic Materials, Vol. 311, No. 1, 2007, pp. 46-50. doi:10.1016/j.jmmm.2006.11.167
[13] G. Vaidyanathan, S. Sendhilnathan and R. Arulmurugan, “Structural and Magnetic Properties of Co1?xZnxFe2O4 Nano-particles By Co-Precipitation Method” Journal of Magnetism and Magnetic Materials, Vol. 313, No. 2, 2007, pp. 293-299. doi:10.1016/j.jmmm.2007.01.010
[14] J. B. Goodenouh and A. L. Loeb, “Theory of Ionic Ordering, Crystal Distortion, and Magnetic Exchange Due to Covalent Forces in Spinels,” Physical Review, Vol. 98, No. 2, 1955, pp. 391-408. doi:10.1103/PhysRev.98.391

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.