Single Adatom Adsorption and Diffusion on Fe Surfaces
Changqing Wang, Dahu Chang, Chunjuan Tang, Jianfeng Su, Yongsheng Zhang, Yu Jia
DOI: 10.4236/jmp.2011.29130   PDF   HTML     4,523 Downloads   8,167 Views   Citations


Using Embedded-atom-method (EAM) potential, we have performed in detail molecular dynamics studies on a Fe adatom adsorption and diffusion dynamics on three low miller index surfaces, Fe (110), Fe (001), and Fe (111). Our results present that adatom adsorption energies and diffusion barriers on these surfaces have similar monotonic trend: adsorption energies, Ea(110) < Ea(001) < Ea(111), diffusion barriers, Ed(110) <Ed(001) <Ed(111). On the Fe (110) surface, adatom simple jump is the main diffusion mechanism with relatively low energy barrier; nevertheless, adatoms exchange with surface atoms play a dominant role in surface diffusion on the Fe (001).

Share and Cite:

C. Wang, D. Chang, C. Tang, J. Su, Y. Zhang and Y. Jia, "Single Adatom Adsorption and Diffusion on Fe Surfaces," Journal of Modern Physics, Vol. 2 No. 9, 2011, pp. 1067-1072. doi: 10.4236/jmp.2011.29130.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Brune, “Microscopic View of Epitaxial Metal Growth: Nucleation and Aggregation,” Surface Science Reports, Vol. 31, No. 4-6, 1998, pp. 125-229. doi:10.1016/S0167-5729(99)80001-6
[2] G. Antczak and G. Ehrlich, “Jump Processes in Surface Diffu-sion,” Surface Science Reports, Vol. 62, No. 2, 2007, pp. 39-61. doi:10.1016/j.surfrep.2006.12.001
[3] J. A. Stroscio, D. T. Pierce and R. A. Dragoset, “Homoepitaxial Growth of Iron and a Real Space View of Reflec-tion-High-Energy-Electron Diffraction,” Physical Review Letters, Vol. 70, No. 23, 1993, pp. 3615-3618. doi:10.1103/PhysRevLett.70.3615
[4] J. A. Stroscio and D. T. Pierce, “Scaling of Diffusion-Mediated Island Growth in Iron-on-Iron Homoepitaxy,” Physical Review B, Vol. 49, No. 12, 1994, pp. 8522-8525. doi:10.1103/PhysRevB.49.8522
[5] P. J. Feibelman, “Scanning Tunneling Microscopy: Energetics from Statistical Analysis,” Physical Review B, Vol. 52, No. 16, 1995, pp. 12444-12446. doi:10.1103/PhysRevB.52.12444
[6] R. Pfandzelter, T. Igel and H. Winter, “Real-Time Study of Nucleation, Growth, and Ripening during Fe/Fe (100) Homoe-pitaxy Using Ion Scattering,” Physical Review B, Vol. 62, No. 4, 2000, pp. R2299-R2302. doi:10.1103/PhysRevB.62.R2299
[7] F. Dulot, B. Kierren and D. Malterre, “Determination of Kinetic Parameters in Layer-By-Layer Growth from RHEED Profile Analysis,” Thin Solid Films, Vol. 423, No. 1, 2003, pp. 64-69. doi:10.1016/S0040-6090(02)00990-2
[8] R. Zdyb, A. Pavlovska, M. Ja?ochowski and E. Bauer, “Self-Organized Fe Nanostructures on W (110),” Surface Science, Vol. 600, No. 8, 2006, pp.1586-1591. doi:10.1016/j.susc.2005.11.041
[9] P.-O. Jubert, O. Fruchart and C. Meyer, “Nucleation and Sur-face Diffusion in Pulsed Laser Deposition of Fe on Mo (110),” Surface Science, Vol. 522, No. 1-3, 2003, pp. 8-16. doi:10.1016/S0039-6028(02)02413-5
[10] I. V. Shvets, S. Murphy and V. Kalinin, “Nanowedge Island Formation on Mo (110),” Surface Science, Vol. 601, No. 15, 2007, pp. 3169-3178. doi:10.1016/j.susc.2007.05.013
[11] D. Spi?ák and J. Hafner, “Diffusion Mechanisms for Iron on Tungsten,” Surface Science, Vol. 584, No. 1, 2005, pp. 55-61.
[12] H. Chamati, N. I. Papanicolaou, Y. Mishin and D. A. Papa-constantopoulos, “Embedded-Atom Potential for Fe and Its Application to Self-Diffusion on Fe (100),” Surface Science, Vol. 600, No. 9, 2006, pp. 1793-1803.
[13] Y. N. Wen, J. M. Zhang and K. W. Xu, “Atomistic Simulation of the Self-Diffusion in Fe (111) Surface,” Surface Science, Vol. 253, No. 21, 2007, pp. 8620-8625. doi:10.1016/j.apsusc.2007.04.060
[14] D. Chen, W. Y. Hu, J. Y. Yang and L. X. Sun, “The Dynamic Diffusion Behaviors of 2D Small Fe Clusters on a Fe(110) Surface,” Journal of Physics: Condensed Matter, Vol. 19, No. 44, 2007, pp. 446009: 1-8.
[15] N. I. Papanicolaou and H. Chamati, “Diffusion of a Vacancy on Fe (100): A Molecular-Dynamics Study,” Computational Ma-terials Science, Vol. 44, No. 4, 2009, pp. 1366-1370. doi:10.1016/j.commatsci.2008.09.006
[16] J G. Amar and F. Family, “Critical Cluster Size: Island Mor-phology and Size Distribution in Submonolayer Epitaxial Growth,” Physical Review Letters, Vol. 74, No. 11, 1995, pp. 2066-2069. doi:10.1103/PhysRevLett.74.2066
[17] C. Ratsch, P. ?milauer, A. Zangwill and D. D. Vvedensky, “Submonolayer Epitaxy without a Critical Nucleus,” Surface Science, Vol. 329, No. 1-2, 1995, pp. L599-L604. doi:10.1016/0039-6028(95)00353-3
[18] O. Fruchart, P. O. Jubert1, M. Eleoui, F. Cheynis, B. Borca, P. David, V. Santonacci, A. Liénard, M. Hasegawa and C. Meyer, “Growth Modes of Fe(110) Revisited: A Contribution of Self-Assembly to Magnetic Materials,” Journal of Physics: Condensed Matter, Vol. 19, No. 5, 2007, pp: 053001: 1-43.
[19] M. S. Daw and M. I. Baskes, “Embedded-Atom Method: Deri-vation and Application to Impurities, Surfaces, and Other De-fects in Metals,” Physical Review B, Vol. 29, No. 12, 1984, pp: 6443-6453. doi:10.1103/PhysRevB.29.6443
[20] H. C. Andersen, “Molecular Dynamics Simulations at Constant Pressure and/or Temperature,” Journal of Chemical Physics, Vol. 72, No. 4, 1980, pp. 2384-2393. doi:10.1063/1.439486
[21] G. Mills and H. Jónsson, “Quantum and Thermal Effects in H2 Dissociative Adsorption: Evaluation of Free Energy Barriers in Multidimensional Quantum Systems,” Physical Review Letters, Vol. 72, No.7, 1994, pp. 1124- 1127. doi:10.1103/PhysRevLett.72.1124

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.