Share This Article:

Model of Preformed Hole-Pairs in Cuprate Superconductors

Abstract Full-Text HTML Download Download as PDF (Size:411KB) PP. 885-897
DOI: 10.4236/jmp.2011.28105    5,428 Downloads   9,948 Views   Citations
Author(s)    Leave a comment

ABSTRACT

A model of preformed hole-pairs in cuprate superconductors has been proposed based on some experimental results i.e., 1) electron paramagnetic resonance spectra of quenched superconductors which show very frequently the fragment (CuO)4 broken off from the CuO2 layer in the structure, 2) 41 meV peak observed in neutron diffraction and nuclear magnetic resonance spectra of superconductors, 3) Heisenberg exchange interaction leading to ferromagnetism observed in CuO which is an essential ingredient of all superconductors and some generally accepted conclusions i.e., a) that the order parameter in superconductors has dx2–y2 symmetr and b) coherence length is of the order of 15 - 20 Angstrom. Heisenberg exchange interaction between two (CuO4) plaquettes each containing a lattice hole binds the two holes which are the charge carriers in the cuprate superconductors. It is not very clear whether the hole-pair is in the triplet or singlet state, but the triplet state is supported by the experimental observation of ferromagnetism in the parent material CuO. The proposed hole-pair singlet is different from Zhang-Rice singlet.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

R. Singh, "Model of Preformed Hole-Pairs in Cuprate Superconductors," Journal of Modern Physics, Vol. 2 No. 8, 2011, pp. 885-897. doi: 10.4236/jmp.2011.28105.

References

[1] R. J. Singh, “Preformed Hole Pairs in Cuprate Superconductors,” International Journal of Modern Physics B, Vol. 23, 2009, pp. 53-76. doi:10.1142/S0217979209049590
[2] Q. B. Meng, Z. J. Wu and S. Y. Zhang, “Evaluation of the Energy Barrier Distribution in Many-Particle Systems Using the Path Integral Approach,” Journal of Physics: Condensed Matter, Vol. 10, 1998, pp. L85-L88. doi:10.1088/0953-8984/10/5/001
[3] Alex Punnoose, B. P. Maurya, Jilson Mathew, M. Umar, M. I. Haque and R. J. Singh, “EPR Observation of Cu2+---Cu2+ Pairs in Cupric Oxide Powders,” Solid State Communications, Vol. 88, 1993, pp. 195-198. doi:10.1016/0038-1098(93)90740-E
[4] R. J. Singh, Alex Punnoose, J. Mathew, B. P. Maurya, et al., “S=1 and S=2 EPR Signals in Modified CuO and BaCuO2,” Physical Review B, Vol. 49, pp. 1346-1349. doi:10.1103/PhysRevB.49.1346
[5] R. J. Singh, M. Ikram, A. Punnoose, B. P. Maurya and Shakeel Khan, “Copper Tetramers in High-Temperature Superconductors,” Physics Letters A, Vol. 208, 1995, pp. 369-374. doi:10.1016/0375-9601(95)00674-8
[6] A. Punnoose and R. J. Singh, “EPR Studies of High-Tc Superconductors and Related Systems,” International Journal of Modern Physics B, Vol. 9, 1995, pp. 1123-1157. doi:10.1142/S0217979295000471
[7] S. Khan, M. Ikram, A. Singh and R. J. Singh, “EPR Study of Deoxygenated La2CuO4,” Physica C, Vol. 281, 1997, pp. 143-148. doi:10.1016/S0921-4534(97)00328-6
[8] Shakeel Khan, Arti Singh, R. J. Singh, “EPR Study of La2-xSrxCuO4 [M=Ba,Sr]”, Solid State Communications, Vol. 106, 1998, pp. 621-626. doi:10.1016/S0038-1098(98)00101-X
[9] S. Khan, A. Singh and R. J. Singh, “EPR Study of La1.854Sr0.146CuO4,” Physica C, Vol. 325, 1999, pp. 165- 172. doi:10.1016/S0921-4534(99)00513-4
[10] R. J. Singh, P. K. Sharma, A. Singh and S. Khan, “EPR Spectra of Deoxygenated High Temperature Superconductors,” Physica C, Vol. 356, No. 1, 2001, pp. 285-296. doi:10.1016/S0921-4534(01)00283-0
[11] N. Guskos, et.al, “EPR Measurements on the Cu2+ Ion in the High-Tc Superconductors MBa2Cu3O7–δ,” Physica Status Solidi, Vol. 165, 1991, pp. 249-253. doi:10.1002/pssb.2221650121
[12] S. K. Mishra and L. E. Misiak, “EPR Study of High-Tc Superconductor Y0.9Ho0.1Ba2Cu3O7?δ,” Solid State Communications, Vol. 72, 1989, pp. 351-357.
[13] J. T. Lue and P. T. Wu, “Observation of Spin-Waves and Chemical Shifts in the High-Temperature Superconducting YBa2Cu3O7?δ Systems,” Solid State Communications, Vol. 66, 1988, pp. 55-58. doi:10.1016/0038-1098(88)90491-7
[14] S. Tyagi, M. Barsoum and K. V. Rao, “Electron Spin Resonance in Y1Ba2Cu3Oy”, Physics Letters A, Vol. 128, 1988, pp. 225-227. doi:10.1016/0375-9601(88)90915-2
[15] Y. Ishikara and K. Shige Matsu, “EPR Observation of Cu2+---Cu2+ Pairs In Cupric Oxide Powders,” Journal of the Physical Society of Japan, Vol. 61, 1992, pp. 3067- 3069.
[16] K. Kindo, M. Honda, T. Kohashi and M. Date, “Electron Spin Resonance in Cupric Oxide,” Journal of the Physical Society of Japan, Vol. 59, 1990, pp. 2332-2335. doi:10.1143/JPSJ.59.2332
[17] D. N. Basov and T. Timusk, “Electrodynamics of High-Tc Superconductors,” Reviews of Modern Physics, Vol. 77, 2005, pp. 721-779.
[18] P. C. Dai, H. A. Mook, G. Aeppli, S. M. Hayden and F. Do an, “Resonance as a Measure of Pairing Correlations in the High-Tc Superconductor YBa2Cu3O6.6,” Nature, Vol. 406, 2000, pp. 965-968. doi:10.1038/35023094
[19] T. C. Hsu, J. B. Marston and I. Affleck, “Effective Hamiltonian for the Superconducting Cu Oxides,” Two Observable Features of the Staggered-Flux Phase at Nonzero Doping,” Physical Review B, Vol. 43, 1991, pp. 2866- 2877. doi:10.1103/PhysRevB.43.2866
[20] D. M. Bartels, A. D. Trifunac and R. G. Lawler,” Observations of Heisenberg Spin Exchange between Reactive Free Radicals,” Chemical Physics Letters, Vol. 152, 1988, pp. 109-115. doi:10.1016/0009-2614(88)87337-8
[21] C. Kittel, “Introduction to Solid State Physics,” 7th Edition, JohnWiley & Sons, Singapore, 1995, p. 446.
[22] F. C. Zhang and T. M. Rice, “Effective Hamiltonian for the superconducting Cu Oxides,” Physical Review B, Vol. 37, 1988, pp. 3759-3761.
[23] H.-M. Xiao, L.-P. Zhu, X.-M. Liu and S.-Y. Fu, “Anomalous Ferromagnetic Behavior of CuO Nanorods Synthesized via Hydrothermal Method,” Solid State Communications, Vol. 141, 2007, pp. 431-435. doi:10.1016/j.ssc.2006.12.005
[24] H. W. Qin, Z. L. Zhang, X. Liu, Y. J. Zhang, J. F. Hu, Room-Temperature Ferromagnetism in CuO Sol–Gel Powders and Films,” Journal of Magnetism and Magnetic Materials, Vol. 322, 2010, pp. 1994-1998. doi:10.1016/j.jmmm.2010.01.021
[25] M. G. Cottom and M. J. Jones, “Theory of Nuclear Spin Interactions in Ferromagnetic Insulators. I. The Thermodynamic Properties,” Journal of Physics C, Vol. 6, 1973, pp. 1020-1036.
[26] J. Stankowski, et al, “Pressure Crossing Point of Tc(0 ) and Tc(P). Parabolic Dependence Tc(c) and Tc(P). Parabolic Dependence Tc(c) in Composite YBCO~PSTI_ ~ Studied by MMMA,” Materials Science (Poland), Vol. 22, No. 3, 2004, p. 175.
[27] J. Demsar, B. Podobnik, J. E. Evetts, G. A. Wagner and D. Mihailovic, “Evidence for Crossover from a Bose-Einstein condensate to a BCS-Like Superconductor with Doping in YBa2Cu3O7?δ from Quasiparticle Relaxation Dynamics Experiments,” Europhysics Letters, Vol. 45, 1999, pp. 381-386. doi:10.1209/epl/i1999-00175-8
[28] K. K. Gomes, A. N. Pasupathy, A. Pushp, S. Ono, Y. Ando and A. Yazdani,” Visualizing Pair Formation on the Atomic Scale in the High-Tc Superconductor Bi2Sr2CaCu2O8+ ,” Nature, Vol. 447, 2007, pp. 569-572. doi:10.1038/nature05881
[29]

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.