Microstructural Morphological Changes in Laser Irradiated Platinum
A. Latif, M. Khaleeq-ur-Rahman, K. A. Bhatti, M. S. Rafique, Asma Hayat
DOI: 10.4236/jmp.2011.28104   PDF   HTML   XML   5,101 Downloads   9,750 Views   Citations


The micro structural morphological investigations of the laser exposed samples of Platinum are presented. Q-Switched Nd: YAG laser (1064 nm, 1.1 MW, 9 - 14 ns) represented by Gaussian profile, power density 3 × 1015 Watt/m2 and focal spot size 12 μm is used to irradiate the targets (4 N, 1 × 1 × 0.3 cm3). Surface modifications are observed and examined for optimized 50 pulses in air (1 atm) as well as under vacuum (10-3 torr) by analyzing SEM micrographs. Ripples, cones, crater and hillocks formation, splashing, sputtering, solidification and redeposition are observed as main modifications at the irradiated surface. It is explored that material is ejected with explosive expel. Motic digital microscope is used for the measurements of ablated micron sized droplets. The average distance between the adjacent cones is larger near the crater region. Topographical changes are characterized applying Atomic Force Microscopy. RMS surface roughness, hillocks and crater sizes on the irradiated surfaces are also calculated. The structural analysis is mainly focused on measurements of grain sizes, diffracted X-Rays intensity and interplanar distance. The results thus obtained determine that IR radiations are unable to change interplanar distance of the target where as changes in diffracted x-rays intensity and grain sizes for irradiated platinum are noticed.

Share and Cite:

A. Latif, M. Khaleeq-ur-Rahman, K. Bhatti, M. Rafique and A. Hayat, "Microstructural Morphological Changes in Laser Irradiated Platinum," Journal of Modern Physics, Vol. 2 No. 8, 2011, pp. 875-884. doi: 10.4236/jmp.2011.28104.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. Lorazo, L. J. Lewis and M. Meunier, “Thermodynamic Pathways to Melting, Ablation and Solidification in Absorbing Solids under Pulsed Laser Irradiation,” Physical Review B, Vol. 73, 2006, p. 134108. doi:10.1103/PhysRevB.73.134108
[2] J. C. Miller and R. F. Haglund, “Laser Ablation and Desorption,” Academic Press, Waltham,1998.
[3] S. R. Franklin and R. K. Thareja, “The Effects of Degraded Spatial Coherence on Ultra–Fast Laser Channel Etching” Appied Surface Science, Vol. 222, 2004, p. 293. doi:10.1016/j.apsusc.2003.08.083
[4] D. B. Chrisey and G. K. Hubler, “Pulsed Laser Deposition”, John Willey and Sons, New York, 1994.
[5] D. Perez and L. J. Lewis, “Damage in Materials Following Ablation by Ultrashort Laser Pulses: A Molecular-Dynamics Study,” Physical Review Letter, Vol. 89, 2002, p. 255504.doi:10.1103/PhysRevLett.89.255504
[6] M. Khaleeq-ur-Rahman, K. A. Bhatti, M. S. Rafique, A. Latif, et al., “X-rays Emission from Laser Induced Copper Plasma under External Magnetic Field,” Laser Physics, Vol. 17, 2007, p. 1382.
[7] M. S. Rafique, M. Khaleeq-ur-Rahman, T. Firdos, K. A. Bhatti, M. Imran and H. Latif. “Plume Dynamics and Radiation Emission from Laser Plasmas,” Laser Physics, Vol. 17, 2007, p. 1138. doi:10.1134/S1054660X0709006X
[8] C. R. Philips, “Laser Ablation and Applications,” Springer Series in Optical Sciences, Vol. 29, 2007, p. 588.
[9] A. Latif, M. Khaleeq-ur-Rahman and M. S. Rafique, Proceeding “Laser Ablation Phenomena in Metals”, Conference on Advanced Materials, Putrajaya, Malaysia, 2005, p. 154.
[10] P. Gibbon, “Short Pulse Laser Interaction with Matter: An Introduction,” Imperial College Press, London, 2005.
[11] V. S. Burakov, A. F. Bokhonov, Nedel’ Ko and N.V Tarasenko, “Change in the Ionisation State of a Near-Surface Laser-Produced Aluminium Plasma in Double-Pulse Ablation Modes,” Applied Surface Science, Vols. 138-139, 1999, p. 350.
[12] B. N. Chichkov, C. Momma, S. Nolti, F. Von Alvensleben and A. Tunnerman, “Laser Beat Wave Excitation of Surface Plasma Wave and Material Ablation,” Applied Physics A, Vol. 63, 1996, p. 109. doi:10.1007/BF01567637
[13] M. Khaleeq-ur-Rahman, A. Latif, A. Hayat, M. S. Rafique, A. Usman and A. Rehman, “ Surface Modifications of Materials by Repititive Laser Pulses,” Radiation Effects and Defects in Solids, 2011 (accepted).
[14] H. G. Rubahn, “Laser Applications in Surface Science and Technology,” John Wiley and Sons, New York, 1999.
[15] J. W. Elan and D. H. Levy,” Low Fluence Laser Sputtering of Gold at 532nm,” Journal of Applied Physics, Vol. 8, 1997, p. 539. doi:10.1063/1.364095
[16] A. Pereira, P. Delaporte, M. Sentis and W. Marine, “Optical and Morphological Investigation of Backward- Deposited Layer Induced by Laser Ablation of Steel in Ambient Air,” Applied Physics, Vol. 98, 2005, p. 8.
[17] J. Maul, I. Strachnov, S. Karpuk, P. Bernhard, A. Oelsner, G. Schonhense and G. Huber, “Onset of Crater Formation during short Pulse Laser Ablation,” Applied Physics A, Vol. 82, 2006, p. 43. doi:10.1007/s00339-005-3357-3
[18] J. M. Fishburn, M. J. Withford, J. A. Coutts, et al., “Study of the Interplay of Vaporization, Melt Displacement and Melt Ejection Mechanisms under Multiple Pulse Irradiation of Metals,” Applied Surface Science, Vol. 253, 2006, p. 662. doi:10.1016/j.apsusc.2005.12.168
[19] Matsunami, O. Fukuoka, M. Tazawa and M. Sataka, “Composition and Optical Properties of Silicon Nitride Films Grown on SiO2-Glass and R-Al2O3 Substrates by Reactive RF Magnetron Sputtering,” Surface Coating Technology, Vol. 196, 2005, p. 50. doi:10.1016/j.surfcoat.2004.08.093
[20] H. Latif, M.S. Rafiqe, M. Khaleq-ur-Rahman, R. S. Rawat, A. Sattar, S. Naseem and P. Lee, “Impact of Laser Produced X-Rays on the Surface of Gold,” Applied Surface Science, Vol. 254, 2008, p. 7505. doi:10.1016/j.apsusc.2008.06.032
[21] A. Arbonet, “Electron-Phonon Scattering in Metal Clusters,” Physical Review Letter, Vol. 90, 2003, p. 177401. doi:10.1103/PhysRevLett.90.177401
[22] W. F. Smith, “Principles of Material Science and Engineering,” McGraw-Hill, Tokyo, 1990.
[23] B. D. Culity, “Elements of X-Ray Diffraction,” Edison Wesley, London, 1978.
[24] R. Jordan, D. Cole, J. G. Lunney, K. Mackay and D. Givord, “Pulsed Laser Ablation of Copper,” Applied Surface Science, Vol. 86, 1995, p. 24. doi:10.1016/0169-4332(94)00370-X
[25] E. Mirica, G. Kowach, P. Evans and H. Du, “Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering,” Crystal Growth Design, Vol. 4, 2004, p. 147. doi:10.1021/cg025595j
[26] N. Bidin, R. Qindeel, M. Y. Daud and K. A. Bhatti, “X-Rays Emission from Laser Induced Copper Plasma under External Magnetic Field,” Laser Physics, Vol. 17, 2007, p. 1222. doi:10.1134/S1054660X07100064
[27] A. Latif, M. Khaleeq-ur-Rahman, K. A. Bhatti, M. S. Rafique and M. Imran, “Irradiation Effects on Copper”, Radiations Effects and Defects in Solids, Vol. 164, 2009, p. 68. doi:10.1080/10420150802163950

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.