Received 7 July 2016; accepted 26 August 2016; published 29 August 2016

1. Introduction
Recently, there has been an upsurge of interest in the investigations of the basic sets of polynomials [1] - [27] . The inspiration has been the need to understand the common properties satisfied by these polynomials, crucial to gaining insights into the theory of polynomials. For instance, in numerical analysis, the knowledge of basic sets of polynomials gives information about the region of convergence of the series of these polynomials in a given domain. Namely, for a particular differential equation admitting a polynomial solution, one can deduce the range of convergence of the polynomials set. This is an advantage in numerical analysis which can be exploited to reduce the computational time. Besides, if the basic set of polynomials satisfies the Cannon condition, then their fast convergence is guaranteed. The problem of derived and integrated sets of basic sets of polynomials in several variables has been recently treated by A. El-Sayed Ahmed and Kishka [1] . In their work, complex variables in complete Reinhardt domains and hyperelliptical regions were considered for effectiveness of the basic set. Also, recently the problem of effectiveness of the difference sets of one and several variables in disc D(R) and polydisc
has been treated by A. Anjorin and M.N Hounkonnou [27] .
In this paper, we investigate the effectiveness, in Reinhardt and hyperelliptic domains, of the set of polynomials generated by the forward (D) and backward (Ñ) difference operators on basic sets. These operators are very important as they involve the discrete scheme used in numerical analysis. Furthermore, their composition operators form the most of second order difference equations of Mathematical Physics, the solutions of which are orthogonal polynomials [25] [26] .
Let us first examine here some basic definitions and properties of basic sets, useful in the sequel.
Definition 1.1 Let
be an element of the space of several complex variables
. The hyperelliptic region of radii
), is denoted by
and its closure by
where

And

Definition 1.2 An open complete Reinhardt domain of radii
is denoted by
and its closure by
, where
![]()
The unspecified domains
and
are considered for both the Reinhardt and hyperelliptic domains. These domains are of radii
. Making a contraction of this domain, we get the domain
where
stands for the right-limits of
:
![]()
Thus, the function
of the complex variables
, which is regular in
can be represented by the power series
(1)
where
represents the mutli indicies of non-negative integers for the function F(z). We have [1]
(2)
where
is the radius of the considered domain. Then for hyperelliptic domains
[1]
![]()
t being the radius of convergence in the domain,
assuming
and
, whenever
. Since
, we have (1)
![]()
where also, using the above function
of the complex variables
, which is regular in
and can be represented by the power series above (1), then we obtain
![]()
and
(3)
Hence, we have for the series ![]()
![]()
. Since
can be taken
arbitrary near to
, we conclude that
![]()
With
and
.
Definition 1.3 A set of polynomials
is said to be basic when every polynomial in the complex variables
can be uniquely expressed as a finite linear combination of the elements of the basic set
.
Thus, according to [4] , the set
will be basic if and only if there exists a unique row-finite-matrix
such that
, where
is a matrix of coefficients of the set
;
are multi indices of nonegative integers,
is the matrix of operators deduced from the associated set of the set
and
is the infinite unit matrix of the basic set
, the inverse of which is
. We have
(4)
Thus, for the function
given in (1), we get
where
,
. The series ![]()
is an associated basic series of F(z). Let
be the number of non zero coefficients
in the representation (4).
Definition 1.4 A basic set satisfying the condition
(5)
Is called a Cannon basic set. If
![]()
Then the set is called a general basic set.
Now, let
be the degree of polynomials of the highest degree in the representation (4). That is to say
is the degree of the polynomial
; the
and since the element of basic set are linearly independent [6] , then
, where
is a constant. Therefore the condition (5) for a basic set to be a Cannon set implies the following condition [6]
(6)
For any function
of several complex variables there is formally an associated basic series
. When the associated basic series converges uniformly to
in some domain, in other words as in classical terminology of Whittaker (see [5] ) the basic set of polynomials are classified according to the classes of functions represented by their associated basic series and also to the domain in which they are represented. To study the convergence property of such basic sets of polynomials in complete Reinhardt domains and in hyperelliptic regions, we consider the following notations for Cannon sum
(7)
For Reinhardt domains [24] ,
(8)
For hyperelliptic regions [1] .
2. Basic Sets of Polynomials in
Generated by Ñ and D Operators
Now, we define the forward difference operator D acting on the monomial
such that
![]()
where E is the shift operator and
-the identity operator. Then
![]()
So, considering the monomial ![]()
![]()
![]()
Hence
![]()
Since
,
![]()
Hence
![]()
where
and
by definition. Similarly, we define the backward difference operator
Ñ acting on the monomial
such that
(9)
Equivalently, in terms of lag operator L defined as
, we get
. Remark that the advantage which comes from defining polynomials in the lag operator stems from the fact that they are isomorphic to the set of ordinary algebraic polynomials. Thus, we can rely upon what we know about ordinary polynomials to treat problems concerning lag-operator polynomials. So,
(10)
The Cannon functions for the basic sets of polynomils in complete Reinhardt domain and in hyperelliptical regions [1] , are defined as follows, respectively:
![]()
Concerning the effectiveness of the basic set
in complete Reinhardt domain we have the following results:
Theorem 2.1 A necessary and sufficient condition [7] for a Cannon set
to be:
1. effective in
is that
;
2. effective in
is that
.
Theorem 2.2 The necessary and sufficient condition for the Cannon basic set
of polynomials of
several complex variables to be effective [1] in the closed hyperelliptic
is that
where
.
The Cannon basic set
of polynomials of several complex variables will be effective in ![]()
if and only if
. See also [1] . We also get for a given polynomial set
:
![]()
So, considering the monomial
,
![]()
Let’s prove the following statement:
Theorem 2.3 The set of polynomials
and ![]()
![]()
Are basic.
Proof: To prove the first part of this theorem, it is sufficient to to show that the initial sets of polynomials
and
, from which
and
are generated, are linearly independent. Suppose there exists a linear relation of the form
(11)
For at least one i,
. Then
![]()
Hence, it follows that
. This means that
would not be linearly independent. Then the set would not be basic. Consequently (11) is impossible. Since
are polynomials, each of them can be represented in the form
. Hence, we write
![]()
In general, given any polynomial
and using
![]()
Hence the representation is unique. So, the set
is a basic set. Changing D to Ñ leads to the same conclusion. We obtain the following result.
Theorem 2.4 The Cannon set
of polynomials in several complex variables
is Effective
in the closed complete Reinhardt domain
and in the closed Reinhardt region
.
Proof: In a complete Reinhardt domain for the forward difference operator D, the Cannon sum of the monomial
is given by
![]()
Then
![]()
where
is a constant. Therefore,
![]()
which implies that
![]()
Then the Cannon function
![]()
![]()
But
. Hence
![]()
![]()
Similarly, for the backward difference operator Ñ, the Cannon sum
![]()
![]()
Then
![]()
where
as
is bounded for the Reinhardt domain is complete. Thus,
![]()
But
![]()
Hence, we deduce that
.
Theorem 2.5 If the Cannon basic set
(resp.
) of polynomials of the several complex variables
for which the condition (5) is satisfied, is effective in
, then the (D) and (Ñ)-set
(resp.
) of polynomials associated with the set
(resp.
) will
be effective in
.
The Cannon sum
of the forward difference operator D of the set
in
will have the form
![]()
where
and
![]()
where
is a constant. Then
![]()
where
![]()
So, by similar argument as in the case of Reinhardt domain we obtain
![]()
where
, since the Cannon function is such that [1]
. Similarly, for the backward difference operator
![]()
Such that the Cannon function writes as
![]()
But
![]()
Since the Cannon function is non-negative. Hence
![]()
3. Examples
Let us illustrate the effectiveness in Reinhardt and hyperelliptic domains, taking some examples. First, suppose that the set of polynomials
is given by
![]()
Then
![]()
Hence
![]()
which implies
![]()
for
;
.
Now consider the new polynomial from the polynomial defined above:
![]()
Hence by Theorem 2.4,
![]()
where
![]()
where
is a constant. Hence,
![]()
The Cannon function
![]()
which implies
![]()
where
![]()
and
![]()
Hence
![]()
Similarly, for the operator Ñ, we have
![]()
Since
![]()
Then
![]()
Implication: The new sets are nowhere effective since the parents sets are nowhere effective. By changing
in Reinhart domain to
, where
, we obtain the
same condition of effectiveness as in Reinhart domain for both operators D and Ñ in the hyperelliptic domain.
The following notations are relevant to the table below.
(12)
(13)
(14)
(15)
Finally, for the classical orthogonal polynomials, the explicit results of computation are given in a Table 1 below.
Thus, in this paper, we have provided new sets of polynomials in C, generated by Ñ and D operators, which satisfy all properties of basic sets related to their effectiveness in specified regions such as in hyperelliptic and Reinhardt domains. Namely, the new basic sets are effective in complete Reinhardt domain as well as in closed Reinhardt domain. Furthermore, we have proved that if the Cannon basic set
is effective in hyperelliptic domain, then the new set
is also effective in the hiperelliptic domain.
Appendix
Key Notations
1)
= Cannon sum of the new D-set in Reinhardt domain.
2)
= Cannon sum of the new Ñ-set in Reinhardt domain.
3)
= Cannon sum of the new D-set in Hyperelliptic domain.
4)
= Cannon sum of the new Ñ-set in Hyperelliptic domain.
5)
= Cannon function of the new D-set in Reinhardt domain.
6)
= Cannon function of the new Ñ-set in Reinhardt domain.
7)
= Cannon sum of the new D-set in Hyperelliptic domain.
8)
= Cannon sum of the new Ñ-set in Hyperelliptic domain.
9)
.
10)
.
11) ![]()
![]()
![]()
![]()
where
is a constant.
is a coefficient corresponding to polynomials set
,
is a coefficient corresponding to polynomial set
. We should note that
or
.
![]()
Submit or recommend next manuscript to SCIRP and we will provide best service for you:
Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work
Submit your manuscript at: http://papersubmission.scirp.org/