Electron Momentum Density and X-ray Structure Factors of Fcc-Copper


In this paper, we report the ground state properties i.e. electron momentum density and X-ray structure factors of fcc-copper are presented. The Am241 Compton spectrometer, which uses 59.54 keV gamma-rays, has been used for the Compton profile measurement. To compare the experimental data, the Compton profiles within the framework of linear combination of atomic orbitals (LCAO) method using Hartree–Fock (HF), density functional (DF) and hybrid B3PW schemes embodied in the CRYSTAL06 code have been computed. Among the various theoretical calculations, it is found that the present experimental data is in very good agreement with the hybrid B3PW scheme. A real-space analysis of the experimental Compton profile shows the metal-like behavior of copper The structure factors for copper are computed using hybrid B3PW scheme and compared with available experimental and theoretical data.

Share and Cite:

N. Munjal, P. Bhambhani, V. Vyas, P. Alvi, G. Sharma and B. Sharma, "Electron Momentum Density and X-ray Structure Factors of Fcc-Copper," World Journal of Condensed Matter Physics, Vol. 1 No. 3, 2011, pp. 70-76. doi: 10.4236/wjcmp.2011.13012.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. Y. Fong and M. L. Cohen, “Energy Band Structure of Cop-per by the Empirical Pseudopotential Method,” Physical Review Letters, Vol. 24, 1970, pp. 306-309. doi:10.1103/PhysRevLett.24.306
[2] P. Eisenberger and W. A. Reed, “Gamma-Ray Compton Profiles of Copper and Nickel,” Physical Review B, Vol. 9, No. 8, 1974, pp. 3242-3247. doi:10.1103/PhysRevB.9.3242
[3] D. G. Kanhere and R. M. Singru, “Electron Momentum Distribution in Nickel and Copper Employing a Renormalized Free Atom Model,” Journal of Physics F: Metal Physics, Vol. 5, No. 6, 1975, pp. 1146-1154. doi:10.1088/0305-4608/5/6/017
[4] P. Pattison, N. K. Hansen and J. R. Schneider, “Anisotropy in the Compton Profile of Copper,” Zeitschrift für Physik B Condensed Matter, Vol. 46, No. 4, 1982, pp. 285-294. doi:10.1007/BF01307702
[5] H. Bross, “Band Structure Calculation of the Momentum Density and Compton Profile of Copper,” Journal of Physics F: Metal Physics, Vol. 12, 1982, pp. 2249-2266. doi:10.1088/0305-4608/12/10/018
[6] R. Courths, B. Cord, H. Wern and S. Hufner, “Angle-Resolved Photoemission and Band Structure of Copper,” Physica Scripta, Vol. 1983, No. T4, pp. 144-147. doi:10.1088/0031-8949/1983/T4/031
[7] G. E. W. Bauer and J. R. Schneider, “Density-Functional Theory of the Compton Profile Anisotropy of Copper Metal,” Zeitschrift für Physik B Condensed Matter, Vol. 54, No. 1, 1983, pp. 17-24. doi:10.1007/BF01507944
[8] G. E. W. Bauer and J. R. Schneider, “Nonlocal Exchange-Correlation Effects in the Total Compton Profile of Copper Metal,” Physical Review Letters, Vol. 52, No. 23, 1984, pp. 2061-2064. doi:10.1103/PhysRevLett.52.2061
[9] G. E. W. Bauer and J. R. Schneider, “Electron Correlation Effect in the Momentum Density of Copper Metal”, Physical Review B, Vol. 31, No. 2, 1985, pp. 681-692. doi:10.1103/PhysRevB.31.681
[10] C. Petrillo and F Sacchetti, “Electron-Electron Interaction and Single-Particle Properties in Copper. II. Compton Profile,” Journal of Physics F: Metal Physics, Vol. 15, No. 1, 1985, pp. 91-99. doi:10.1088/0305-4608/15/1/013
[11] M. V. Heller and J. R. Moreira, “Compton-Profile Measurements for W, Ag, and Cu with 662-keV γ Rays,” Physical Review A, Vol. 33, No. 4, 1986, pp. 2391-2395. doi:10.1103/PhysRevA.33.2391
[12] Ch. N. Chang, L. K. Ngai and B. Li, “The Experimental Compton Profile of Cu, Zn, Cd, Ta, and Au,” Chinese Journal of Physics, Vol. 27, No. 6, 1989, pp. 461.
[13] A. Marini, G. Onida and R. D. Sole, “Quasiparticle Electronic Structure of Copper in the GW Approximation,” Physical Review Letters, Vol. 88, No. 1, 2002, pp. 016403-014407. doi:10.1103/PhysRevLett.88.016403
[14] A. Winkelmann, W.-C. Lin, Ch.-T. Chiang, F. Bisio, H. Petek and J. Kirschner, “Resonant Coherent Three-Pho- ton Photoemission from Cu(001),” Physical Review B, Vol. 80, No. 15, 2009, pp. 155128-155137. doi:10.1103/PhysRevB.80.155128
[15] P. A. Doyle and P. S. Turner, “Crystal Physics, Diffraction, Theoretical and General Crystallography,” Acta Crystallographica Section A, Vol. 24, Part 3, 1968, pp. 390-397. doi:10.1107/S0567739468000756
[16] S. Wakoh and J. Ya-mashita, “Theoretical Form Factors of 3D Transition Metals,” Journal of the Physical Society of Japan, Vol. 30, 1971, pp. 422-427. doi:10.1143/JPSJ.30.422
[17] D. Bagayoko, D. G. Laurent, S. P. Singhal and J. Callaway, “Band Structure, Optical Properties, and Compton Profile of Copper,” Physical Review A, Vol. 76, No. 2, 1980, pp. 187-190. doi:10.1016/0375-9601(80)90609-X
[18] J. R. Schneider, N. K. Hansen and H. Kretschmer, “Crystal Physics, Diffraction, Theoretical and General Crystallography,” Acta Crystal-lographica Section A, Vol. 37, Part 5, 1981, pp. 711-722. doi:10.1107/S0567739481001599
[19] H. Eckardt, L. Fritsche and J. Noffke, “Self-Consistent Relativistic Band Structure of the Noble Metals,” Journal of Physics F: Metal Physics, Vol. 14, No. 1, 1984, pp. 97-112. doi:10.1088/0305-4608/14/1/013
[20] C. Petrillo, F. Sacchetti and G. Mazzone, “Foundations of Crystallography,” Acta Crystallographica Section A, Vol. 54, Part 4, 1998, pp. 468-480. doi:10.1107/S0108767398001548
[21] M. Saunders, A. G. Fox and P. A. Midgley, “Foundations of Crystallography,” Acta Crystallographica Section A, Vol. 55, Part 3, 1999, pp. 480-488. doi:10.1107/S0108767398016316
[22] J. Friis, B. Jiang, John C. H. Spence and R. Holmestad, “Quantitative Convergent Beam Electron Diffraction Measurements of Low-Order Struc-ture Factors in Copper,” Microscopy and Microanalysis, Vol. 9, No. 5, 2003, pp. 379-389. doi:10.1017/S1431927603030319
[23] M. J. Cooper, “Comp-ton Scattering and Electron Momentum Determination,” Re-ports on Progress in Physics, Vol. 48, No. 4, 1985, pp. 415-481. doi:10.1088/0034-4885/48/4/001
[24] R. Dovesi, V. R. Saun-ders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, Ph. D’Arco and M. Llunell, “Crystal 06 User’s Manual,” University of Torino, Torino, 2006.
[25] B. K. Sharma, A. Gupta, H. Singh, S. Perkki?, A. Kshirsagar and D. G. Kanhare, “Reports on Pro-gress in Physics Compton Profile of Palladium,” Physical Re-view B, Vol. 37, No. 12, 1988, pp. 6821-6826. doi:10.1103/PhysRevB.37.6821
[26] D. N. Timms, “Compton Scattering Studies of Spin and Momentum Densities,” Ph.D. Thesis, University of Warwick, England, 1989.
[27] J. Fel-steiner, P. Pattison and M. J. Cooper, “Effect of Multiple Scat-tering on Experimental Compton Profiles: A Monte Carlo Cal-culation,” Philosophical Magazine, Vol. 30, No. 3, 1974, pp. 537-548. doi:10.1080/14786439808206579
[28] F. Biggs, L. B. Man-delsohn and J. B. Mann, “Hartree-Fock Compton Profiles for the Elements,” Atomic Data and Nuclear Data Tables, Vol. 16, No. 3, 1975, pp. 201-309. doi:10.1016/0092-640X(75)90030-3
[29] C. Pisani, R. Dovesi and C. Roetti, “Hartree Fock Ab Initio Treatment of Crystalline Systems (Lecture Notes in Chemistry),” Springer-Verlag, Berlin, 1988.
[30] http://www. crystal. unito. it/Basis sets/Copper. html
[31] J. P. Perdew and Y. Wang, “Accurate and Simple Analytic Representation of the Electron-Gas Correlation En-ergy,” Physical Review B, Vol. 45, No. 23, 1992, pp. 13244-13249. doi:10.1103/PhysRevB.45.13244
[32] U. von Barth and L. Hedin, “A Local Exchange-Corre- lation Potential for the Spin Polarized Case. I,” Journal of Physics C: Solid State Physics, Vol. 5, No. 13, 1972, pp. 1629-1642. doi:10.1088/0022-3719/5/13/012
[33] A. D. Becke, “Den-sity-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior,” Physical Review A, Vol. 38, No. 6, 1988, pp. 3098-3100. doi:10.1103/PhysRevA.38.3098
[34] J. P. Perdew, “Electronic Structure of Solids 1991,” Aka- demie Verlag, Berlin, 1991.
[35] A. D. Becke, “Density-Functional Thermochemistry. III. The Role of Exact Exchange,” The Journal of Chemical Physics, Vol. 98, No. 7, 1993, pp. 5648-5652. doi:10.1063/1.464913
[36] X. -B. Feng and N. M. Harrison, “Electronic Structure of CaCuO2 from the B3LYP Hybrid Den-sity Functional,” Physical Review B, Vol. 69, No. 12, 2004, pp. 132502- 132506. doi:10.1103/PhysRevB.69.132502
[37] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density,” Physical Review B, Vol. 37, No. 2, 1988, pp. 785-789. doi:10.1103/PhysRevB.37.785
[38] R. Benedek, R. Prasad, S. Manninen, B. K. Sharma, A. Bansil and P. E. Mijnarends, “Compton Profiles for Polycrystalline CuxNi1-x Alloys: Theory and Experiment,” Physical Review B, Vol. 32, No. 12, pp. 7650-7658. doi:10.1103/PhysRevB.32.7650
[39] P. Pattison, N. K. Hansen and J. R. Schneider, “Identifying the Bonding in Diamond and Silicon Using Compton Scattering Experiments,” Chemical Physics, Vol. 59, No. 3, 1981, pp. 231-242. doi:10.1016/0301-0104(81)85166-X
[40] R. Jain, B. L. Ahuja and B. K. Sharma, “Density- Func- tional Thermochemistry. III. The Role of Exact Ex- change,” Indian Journal of Pure & Ap-plied Physics, Vol. 42, 2004, pp. 43-48.
[41] P. Coppens, “X-Ray Charge Density and Chemical Bond- ing,” Oxford University Press, Oxford, 1997.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.