Metabolic Effects of Endogenous and Exogenous Heterotropic Hemoglobin Modulators on Anion Transport: The Case of Pig Erythrocytes

DOI: 10.4236/oalib.1101994   PDF   HTML   XML   646 Downloads   910 Views   Citations

Abstract

This comparative study, focused on the anion kinetic of band 3 protein of pig erythrocytes, investigates in vitro the metabolic functionality of the red blood cells of this mammal which show particular characteristics of the cell membrane and significant stoichiometric variations of several cytosolic components. Pig red blood cells compared to human ones, are characterized by a higher anion flux strongly modulated by the conformational transition state (T-R) of hemoglobin; these findings are probably connected to the intracellular concentration of 2,3-disphosphoglycerate and to chloride activity. The experimental use, alone or in combination, of some exogenous heterotropic modulators of hemoglobin as orthovanadate, gemfibrozil and resveratrol, shows characteristic modulations of the anion flux which are related to the cytosolic metabolites physiologically present in pig erythrocytes, to the metabolism and oxidative stress. Our findings highlight new features about the pig red blood cells functionality and contribute to extending the current understanding of their life cycle, providing opportunities for new investigations in the field of comparative physiology.

Share and Cite:

Tellone, E. , Russo, A. , Giardina, B. , Galtieri, A. and Ficarra, S. (2015) Metabolic Effects of Endogenous and Exogenous Heterotropic Hemoglobin Modulators on Anion Transport: The Case of Pig Erythrocytes. Open Access Library Journal, 2, 1-11. doi: 10.4236/oalib.1101994.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Willford, D.C. and Hill, E.P. (1986) Modest Effect of Temperature on the Porcine Oxygen Dissociation Curve. Respiration Physiology, 64, 113-123.
http://dx.doi.org/10.1016/0034-5687(86)90035-6
[2] Condò, S.G., Corda, M., Sanna, M.T., Pellegrini, M.G., Ruiz, M.P., Castagnola, M. and Giardina, B. (1992) Molecular Basis of Low-Temperature Sensitivity in Pig Hemoglobins. European Journal of Biochemistry, 209, 773-776.
http://dx.doi.org/10.1111/j.1432-1033.1992.tb17347.x
[3] Dixon, E. and Wilson, B.A. (1981) Erythrocyte Metabolism: Kinetic and Electrophoretic Analyses of Pig Red Cell Hexokinase. Journal of Experimental Zoology, 215, 63-76.
http://dx.doi.org/10.1002/jez.1402150108
[4] Stocchi, V., Magnani, M., Novelli, G., Dachà, M. and Fornaini, G. (1983) Pig Red Blood Cell Hexokinase: Evidence for the Presence of Hexokinase Types II and III, and Their Purification and Characterization. Archives of Biochemistry and Biophysics, 226, 365-376.
http://dx.doi.org/10.1016/0003-9861(83)90303-X
[5] Magnani, M., Stocchi, V., Serafini, N., Piatti, E., Dachà, M. and Fornaini, G. (1983) Pig Red Blood Cell Hexokinase: Regulatory Characteristics and Possible Physiological Role. Archives of Biochemistry and Biophysics, 226, 377-387.
http://dx.doi.org/10.1016/0003-9861(83)90304-1
[6] Watts, R.P., Brendel, K., Luthra, M.G. and Kim, H.D. (1979) Inosine from Liver as a Possible Energy Source for Pig Red Blood Cells. Life Sciences, 25, 1577-1582.
http://dx.doi.org/10.1016/0024-3205(79)90440-5
[7] Jones, G.L. and Masters, C.J. (1976) On the Comparative Characteristics of Mammalian Catalases. Comparative Biochemistry and Physiology Part B, 55, 511-518.
http://dx.doi.org/10.1016/0305-0491(76)90009-2
[8] Maral, J., Puget, K. and Michelson, A.M. (1977) Comparative Study of Superoxide Dismutase, Catalase and Glutathione Peroxidase Levels in Erythrocytes of Different Animals. Biochemical and Biophysical Research Communications, 77, 1525-1535.
http://dx.doi.org/10.1016/S0006-291X(77)80151-4
[9] Zhang, D., Kiyatkin, A., Bolin, J.T. and Low, P.S. (2000) Crystallographic Structure and Functional Interpretation of the Cytoplasmic Domain of Erythrocyte Membrane Band 3. Blood, 96, 2925-2933.
[10] Giardina, B., Messana, I., Scatena, R. and Castagnola, M. (1995) The Multiple Functions of Haemoglobin. Critical Reviews in Biochemistry and Molecular Biology, 30, 165-196.
http://dx.doi.org/10.3109/10409239509085142
[11] Lewis, I.A., Campanella, M.E., Markley, J.L. and Low, P.S. (2009) Role of Band 3 in Regulating Metabolic Flux of Red Blood Cells. PNAS, 106, 18515-18520.
http://dx.doi.org/10.1073/pnas.0905999106
[12] Russo, A., Tellone, E., Ficarra, S., Giardina, B., Bellocco, E., Laganà, G., Leuzzi, U., Kotyk, A. and Galtieri, A. (2008) Band 3 Protein Function in Teleost Fish Erythrocytes: Effect of Oxygenation-Deoxygenation. Physiological Research, 57, 49-54.
[13] Zijlstra, W.G., Buursma, A. and Meeuwsen-Van Der Roest, W.P. (1991) Absorption Spectra of Human Fetal and Adult Oxyhemoglobin, Deoxyhemoglobin, Carboxyhemoglobin and Methemoglobin. Clinical Chemistry, 37, 1633-1638.
[14] Labotka, R.J. (1984) Measurement of Intracellular pH and Deoxyhemoglobin Concentration in Deoxygenated Erythrocytes by Phosphorus-31 Nuclear Magnetic Resonance. Biochemistry, 23, 5549-5555.
http://dx.doi.org/10.1021/bi00318a026
[15] Giardina, B. and Amiconi, G. (1981) Measurement of Binding of Gaseous and Nongaseous Ligands to Hemoglobin by Conventional Spectrophotometric Procedures. Methods in Enzymology, 76, 417-427.
http://dx.doi.org/10.1016/0076-6879(81)76133-0
[16] Romano, L., Peritore, D., Simone, E., Sidoti, A., Trischitta, F. and Romano, P. (1998) Chloride-Sulfate Exchange Chemically Measured in Human Erythrocyte Ghosts. Cellular and Molecular Biology, 44, 351-355.
[17] Galtieri, A., Tellone, E., Romano, L., Misiti, F., Bellocco, E., Ficarra, S., Russo, A., Di Rosa, D., Castagnola, M., Giardina, B. and Messana, I. (2002) Band-3 Protein Function in Human Erythrocytes: Effect of Oxygenation-Deoxygenation. Biochimica et Biophysica Acta, 1564, 214-218.
http://dx.doi.org/10.1016/S0005-2736(02)00454-6
[18] Moriyama, R., Nagatomi, Y., Hoshino, F. and Makino, S. (1994) Amino Acid Sequences around Exofacial Proteolytic Cleavage Sites of Band 3 from Bovine and Porcine Erythrocytes. International Journal of Biochemistry, 26, 133-137.
http://dx.doi.org/10.1016/0020-711X(94)90206-2
[19] Moriyama, R., Lombardo, C.R., Workman, R.F. and Low, P.S. (1993) Regulation of Linkages between the Erythrocyte Membrane and Its Skeleton by 2,3-Diphosphoglycerate. The Journal of Biological Chemistry, 268, 10990-10996.
[20] Conway, R.G. and Tao, M. (1981) Effect of 2,3-Diphosphoglyceric Acid on the Human Erythrocyte Membrane Phosphorylation System. The Journal of Biological Chemistry, 256, 11932-11938.
[21] Chao, T.S. and Tao, M. (1991) Effect of 2,3-Diphosphoglycerate on the Phosphorylation of Protein 4.1 by Protein Kinase C. Archives of Biochemistry and Biophysics, 285, 221-226.
http://dx.doi.org/10.1016/0003-9861(91)90352-J
[22] Cuncic, C., Detich, N., Ethier, D., Tracey, A.S., Gresser, M.J. and Ramachandran, C. (1999) Vanadate Inhibition of Protein Tyrosine Phosphatases in Jurkat Cells: Modulation by Redox State. Journal of Biological Inorganic Chemistry, 4, 354-359.
http://dx.doi.org/10.1007/s007750050322
[23] Bordin, L., Clari, G., Moro, I., Dalla Vecchia, F. and Moret, V. (1995) Functional Link between Phosphorylation State of Membrane Proteins and Morphological Changes of Human Erythrocytes. Biochemical and Biophysical Research Communications, 213, 249-257.
http://dx.doi.org/10.1006/bbrc.1995.2123
[24] Brunati, A.M., Bordin, L., Clari, G., James, P., Quadroni, M., Baritono, E., Pinna, L.A. and Donella-Deana, A. (2000) Sequential Phosphorylation of Protein Band 3 by Syk and Lyn Tyrosin Kinases in Intact Human Erythrocytes. Identification of Primary and Secondary Phosphorylation Sites. Blood, 96,1550-1557.
[25] Tellone, E., Ficarra, S., Scatena, R., Giardina, B., Kotyk, A., Russo, A., Colucci, D., Bellocco, E., Laganà, G. and Galtieri, A. (2008) Influence of Gemfibrozil on Sulphate Transport in Human Erythrocytes during the Oxygenation-Deoxygenation Cycle. Physiological Research, 57, 621-629.
[26] Tellone, E., Ficarra, S., Giardina, B., Scatena, R., Russo, A., Clementi, M.E., Misiti, F., Bellocco, E. and Galtieri, A. (2008) Oxidative Effects of Gemfibrozil on Anion Influx and Metabolism in Normal and Beta-Thalassemic Erythrocytes: Physiological Implications. Journal of Membrane Biology, 224, 1-8.
http://dx.doi.org/10.1007/s00232-008-9122-8
[27] Galtieri, A., Tellone, E., Ficarra, S., Russo, A., Bellocco, E., Barreca, D., Scatena, R., Laganà, G., Lezzi, U. and Giardina, B. (2010) Resveratrol Treatment Induces Redox Stress in Red Blood Cells: A Possible Role of Caspase 3 in Metabolism and Anion Transport. Biological Chemistry, 391, 1057-1065.
http://dx.doi.org/10.1515/bc.2010.100
[28] Frick, M.H., Elo, O., Haapa, K., Heinonen, O.P., Heinsalmi, P., Helo, P., Huttunen, J.K., Kaitaniemi, P., Oskinen, P. and Manninen, V. (1987) Helsinki Heart Study: Primary-Prevention Trial with Gemfibrozil in Middle-Aged Men with Dyslipidemia. Safety of Treatment, Changes in Risk Factors, and Incidence of Coronary Heart Disease. New England Journal of Medicine, 317, 1237-1245.
http://dx.doi.org/10.1056/NEJM198711123172001
[29] Manninen, V., Elo, M.O., Frick, M.H., Haapa, K., Heinonen, O.P., Heinsalmi, P., Helo, P., Huttunen, J.K., Kaitaniemi, P., Koskinen, P., et al. (1988) Lipid Alterations and Decline in the Incidence of Coronary Heart Disease in the Helsinki Heart Study. JAMA, 260, 641-651.
http://dx.doi.org/10.1001/jama.1988.03410050061031
[30] Elmali, N., Esenkaya, I., Harma, A., Ertem, K., Turzok, Y. and Mizrak, B. (2005) Effect of Resveratrol in Experimental Osteoarthritis in Rabbits. Inflammation Research, 54, 158-162. http://dx.doi.org/10.1007/s00011-004-1341-6
[31] Elmali, N., Baysal, O., Harma, A., Esenkaya, I. and Mizrak, B. (2007) Effects of Resveratrol in Inflammatory Arthritis. Inflammation, 30, 1-6.
http://dx.doi.org/10.1007/s10753-006-9012-0
[32] Shakibaei, M., John, T., Schulze-Tanzil, G., Lehmann, I. and Mobasheri, A. (2007) Suppression of NF-κB Activation by Curcumin Leads to Inhibition of Expression of Cyclo-Oxygenase-2 and Matrix Metalloproteinase-9 in Human Articular Chondrocytes: Implications for the Treatment of Osteoarthritis. Biochemical Pharmacology, 73, 1434-1445.
http://dx.doi.org/10.1016/j.bcp.2007.01.005
[33] Fronticelli, C., Sanna, M.T., Perez-Alvarado, G.C., Karavitis, M., Lu, A.L. and Brinigar, W.S. (1995) Allosteric Modulation by Tertiary Structure in Mammalian Hemoglobins. Journal of Biological Chemistry, 270, 30588-30592.
http://dx.doi.org/10.1074/jbc.270.51.30588
[34] De Rosa, M.C., Castagnola, M., Bertonati, C., Galtieri, A. and Giardina, B. (2004) From the Arctic to Fetal Life: Physiological Importance and Structural Basis of an “Additional” Chloride-Binding Site in Haemoglobin. Biochemical Journal, 380, 889-896.
http://dx.doi.org/10.1042/bj20031421
[35] Whittaker, J., Hawkins, M. and Swaminathan, R. (1983) Characteristics of Sodium Transport in Pig (Sus scrofa) Erythrocytes. Biochemical Medicine, 30, 43-48.
http://dx.doi.org/10.1016/0006-2944(83)90006-6
[36] Thevenin, B.J., Periasamy, N., Shohet, S.B. and Verkman, A.S. (1994) Segmental Dynamics of the Cytoplasmic Domain of Erythrocyte Band 3 Determined by Time-Resolved Fluorescence Anisotropy: Sensitivity to pH and Ligand Binding. Proceedings of the National Academy of Sciences of the United States of America, 91, 1741-1745.
http://dx.doi.org/10.1073/pnas.91.5.1741
[37] Schindler, M., Koppel, D.E. and Sheetz, M.P. (1980) Modulation of Membrane Protein Lateral Mobility by Polyphosphates and Polyamines. Proceedings of the National Academy of Sciences of the United States of America, 77, 1457-1461.
http://dx.doi.org/10.1073/pnas.77.3.1457
[38] Sheetz, M.P. and Casaly, J. (1980) 2,3-Diphosphoglycerate and ATP Dissociate Erythrocyte Membrane Skeletons. The Journal of Biological Chemistry, 255, 9955-9960.
[39] Chètrite, G. and Cassoly, R. (1985) Affinity of Hemoglobin for the Cytoplasmic Fragment of Human Erythrocyte Membrane Band 3. Equilibrium Measurements at Physiological pH Using Matrix-Bound Proteins: The Effects of Ionic Strength, Deoxygenation and of 2,3-Diphosphoglycerate. Journal of Molecular Biology, 185, 639-644.
http://dx.doi.org/10.1016/0022-2836(85)90076-2
[40] Walder, J.A., Chatterjee, R., Steck, T.L., Low, P.S., Musso, G.F., Kaiser, E.T., Rogers, P.H. and Arnone, A. (1984) The Interaction of Hemoglobin with the Cytoplasmic Domain of Band 3 of the Human Erythrocyte Membrane. The Journal of Biological Chemistry, 259, 10238-10246.
[41] Weber, R.E., Voelter, W., Fago, A., Echner, H., Campanella, E. and Low, P.S. (2004) Modulation of Red Cell Glycolysis: Interactions between Vertebrate Hemoglobins and Cytoplasmic Domains of Band 3 Red Cell Membrane Proteins. AJP: Regulatory, Integrative and Comparative Physiology, 287, R454-R464.
http://dx.doi.org/10.1152/ajpregu.00060.2004
[42] Perutz, M.F., Fermi, G., Abraham, D.J., Poyart, C. and Bursaux, E. (1986) Hemoglobin as a Receptor of Drugs and Peptides: X-Ray Studies of the Stereochemistry of Binding. Journal of the American Chemical Society, 108, 1064-1078.
http://dx.doi.org/10.1021/ja00265a036
[43] Kleinschmidt, T. and Sgouros, J.G. (1987) Hemoglobin Sequences. Biological Chemistry Hoppe-Seyler, 368, 579-615.
[44] Maccaglia, A., Mallozzi, C. and Minetti, M. (2003) Differential Effects of Quercetin and Resveratrol on Band 3 Tyrosine Phosphorylation Signalling of Red Blood Cells. Biochemical and Biophysical Research Communications, 305, 541-547.
http://dx.doi.org/10.1016/S0006-291X(03)00762-9
[45] Zipser, Y. and Kosover, N.S. (1996) Phosphotyrosine Phosphatase Associated with Band 3 Protein in Human Erythrocyte Membrane. Biochemical Journal, 314, 881-887.
http://dx.doi.org/10.1042/bj3140881
[46] Mandal, D., Moitra, P.K., Saha, S. and Basu, J. (2002) Caspase 3 Regulates Phosphatidylserine Externalization and Phagocitosis of Oxidatively Stressed Erythrocytes. FEBS Letters, 513, 184-188.
http://dx.doi.org/10.1016/S0014-5793(02)02294-9
[47] Mandal, D., Baudin-Creuza, V., Bhattacharyy, A., Pathak, S., Delaunay, J., Kundu, M. and Basu, J. (2003) Caspase 3-Mediated Proteolysis of the N-Terminal Cytoplasmic Domain of the Human Erythroid Anion Exchanger 1 (Band 3). Journal of Biological Chemistry, 278, 52551-52558.
http://dx.doi.org/10.1074/jbc.M306914200
[48] Ficarra, S., Tellone, E., Giardina, B., Scatena, R., Russo, A., Misiti, F., Clementi, M.E., Colucci, D., Bellocco, E., Laganà, G., Barreca, D. and Galtieri, A. (2009) Derangement of Erythrocytic AE1 in Beta-Thalassemia by Caspase 3: Pathogenic Mechanisms and Implications in Red Blood Cell Senescence. Journal of Membrane Biology, 228, 43-49.
http://dx.doi.org/10.1007/s00232-009-9157-5
[49] Kim, H.D. and McManus, T.J. (1971) Studies on the Energy Metabolism of Pig Red Cells. I. The Limiting Role of Membrane Permeability in Glycolysis. Biochimica et Biophysica Acta, 230, 1-11.
http://dx.doi.org/10.1016/0304-4165(71)90048-1
[50] Young, J.D., Paterson, A.R.P. and Henderson, J.F. (1985) Nucleoside Transport and Metabolism in Erythrocytes from the Yucatan Miniature Pig. Evidence That Inosine Function as an in Vivo Substrate. Biochimica et Biophysica Acta, 842, 214-224.
http://dx.doi.org/10.1016/0304-4165(85)90205-3
[51] Young, J.D., Jarvis, S.M., Clanachan, A.S., Henderson, J.F. and Paterson, A.R. (1986) Nitrobenzylthioinosine: An in Vivo Inhibitor of Pig Erythrocytes Energy Metabolism. American Journal of Physiology, 251, 90-94.
[52] Jurkowitz, M.S., Litsky, M.L., Browning, M.J. and Hohl, C.M. (1998) Adenosine, Inosine, and Guanosine Protect Glial Cells during Glucose Deprivation and Mitochondrial Inhibition: Correlation between Protection and ATP Preservation. Journal of Neurochemistry, 71, 535-548.
http://dx.doi.org/10.1046/j.1471-4159.1998.71020535.x
[53] Sartorelli, P., Paltrinieri, S., Agnes, F. and Baglioni, T. (1996) Role of Inosine in Prevention of Methaemoglobinaemia in the Pig: In Vitro Studies. Journal of Veterinary Medicine Series A, 43, 489-493.
http://dx.doi.org/10.1111/j.1439-0442.1996.tb00479.x
[54] Romero, N., Denicola, A., Souza, J.M. and Radi, R. (1999) Diffusion of Peroxynitrite in the Presence of Carbon Dioxide. Archives of Biochemistry and Biophysics, 368, 23-30.
http://dx.doi.org/10.1006/abbi.1999.1272
[55] Szabò, C., Ischiropoulos, H. and Radi, R. (2007) Peroxynitrite: Biochemistry, Pathophysiology and Development of Therapeutics. Nature Reviews Drug Discovery, 6, 662-680.
http://dx.doi.org/10.1038/nrd2222

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.