[1]
|
McCulloch, P. and Nelder, J.A. (1989) Generalized Linear Models. 2nd Edition, Chapman and Hall, London. http://dx.doi.org/10.1007/978-1-4899-3242-6
|
[2]
|
Breslow, N.E. and Clayton, D.G. (1993) Approximate Inference Ingeneralized Linear Mixed Models. Journal of the American Statistical Association, 88, 9-25.
|
[3]
|
Lin, X. and Breslow, N.E. (1996) Bias Correction in Generalized Lnear Mixed Models with Multiple Components of Dispersion. Journal of the American Statistical Association, 91, 1007-1016. http://dx.doi.org/10.1080/01621459.1996.10476971
|
[4]
|
Lee, Y. and Nelder, J.A. (2001) Hierrarchical Generalized Linear Models: A Synthesis of Generalized Linear Models, Random Effect Models and Structured Dispersions. Biometrika, 88, 987-1006. http://dx.doi.org/10.1093/biomet/88.4.987
|
[5]
|
Karim, M.R. and Zeger, S.L. (1992) Generalized Linear Models with Random Effects; Salamnder Mating Revisited. Biometrics, 48, 681-694. http://dx.doi.org/10.2307/2532317
|
[6]
|
McCulloch, C.E. (1994) Maximum Likelihood Variance Components Estimation for Binary Data. Journal of the American Statistical Association, 89, 330-335. http://dx.doi.org/10.1080/01621459.1994.10476474
|
[7]
|
McCulloch, C.E. (1997) Maximum Likelihood Algorithms for Generallized Linear Mixed Models. Journal of the American Statistical Association, 92, 162-170. http://dx.doi.org/10.1080/01621459.1997.10473613
|
[8]
|
Chan, J.S., Kuk, A.Y. and Yam, C.H. (2005) Monte Carlo Approximation through Gibbs Output in Generalized Linear Mixed Models. Journal of Maltivariate Analysis, 94, 300-312. http://dx.doi.org/10.1016/j.jmva.2004.05.004
|
[9]
|
Pan, J. and Thompson, R. (2003) Gauss-Hermite Quadrature Approximation for Estimation in Generalised Linear Mixed Models. Computational Statistics, 18, 57-78.
|
[10]
|
Pan, J. and Thompson, R. (2007) Quasi-Monte Carlo Estimation in Generalized Linear Mixed Models. Computational Statistics and Data Analysis, 51, 5765-5775. http://dx.doi.org/10.1016/j.csda.2006.10.003
|
[11]
|
Ye, H. and Pan, J. (2006) Modelling Covariance Structures in Generalized Estimating Equations for Longitudinal Data. Biometrika, 93, 927-941. http://dx.doi.org/10.1093/biomet/93.4.927
|
[12]
|
Niederreiter, H. (1992) Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia. http://dx.doi.org/10.1137/1.9781611970081
|
[13]
|
Spanier, J. and Maize, E. (1994) Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples. SIAM Review, 36, 19-44. http://dx.doi.org/10.1137/1036002
|
[14]
|
Traub, J.F. and Wozniakowski, H. (1992) The Monte Carlo Algorithm with Pseudorandom Generator. Mathematics of Computation, 58, 323-339. http://dx.doi.org/10.1090/S0025-5718-1992-1106984-4
|
[15]
|
Fang, K.T. and Wang, Y. (1994) Number-Theoretic Methods in Statistics. Chapman and Hall, London. http://dx.doi.org/10.1007/978-1-4899-3095-8
|
[16]
|
Morokoff, W.J. and Caflisch, R.E. (1995) Quasi-Monte Carlo Integration. Journal of Computational Physics, 122, 218-230. http://dx.doi.org/10.1006/jcph.1995.1209
|
[17]
|
Pourahmadi, M. (1999) Joint Mean-Covariance Models with Applications to Longitudinal Data: Unconstrained Parameterization. Biometrika, 86, 677-690. http://dx.doi.org/10.1093/biomet/86.3.677
|
[18]
|
Pourahmadi, M. (2000) Maximum Likelihood Estimation of Generalised Linear Models for Multivariate Normal Covariance Matrix. Biometrika, 87, 425-435. http://dx.doi.org/10.1093/biomet/87.2.425
|
[19]
|
Daniels, M.J. and Pourahmadi, M. (2002) Bayesian Analysis of Covariance Matrices and Dynamic Models for Longitudinal Data. Biometrika, 89, 553-566. http://dx.doi.org/10.1093/biomet/89.3.553
|
[20]
|
Daniels, M.J. and Zhao, Y.D. (2003) Modelling the Random Effects Covariance Matrix in Longitudinal Data. Statistics in Medicine, 22, 1631-1647. http://dx.doi.org/10.1002/sim.1470
|
[21]
|
Smith, M. and Kohn, R. (2002) Parsimonious Covariance Matrix Estimation for Longitudinal Data. Journal of the American Statistical Association, 97, 1141-1153. http://dx.doi.org/10.1198/016214502388618942
|
[22]
|
Pan, J. and MacKenzie, G. (2003) On Modelling Mean-Covariance Structures in Longitudinal Studies. Biometrika, 90, 239-244. http://dx.doi.org/10.1093/biomet/90.1.239
|
[23]
|
Shun, Z. (1997) Another Look at the Salamander Mating Data: A Modified Laplace Approximation Approach. Journal of the American Statistical Association, 92, 341-349. http://dx.doi.org/10.1080/01621459.1997.10473632
|
[24]
|
Breslow, N.E. and Lin, X. (1995) Bias Correction in Generalised Linear Mixed Models with a Single-Component of Dispersion. Biometrika, 82, 81-91. http://dx.doi.org/10.1093/biomet/82.1.81
|
[25]
|
Booth, J.G. and Hobert, J.P. (1999) Maximizing Generalized Linear Mixed Model Likelihoods with an Automated Monte Carlo EM Algorithm. Journal of the Royal Statistical Society, B, 61, 265-285. http://dx.doi.org/10.1111/1467-9868.00176
|
[26]
|
Aitken, M. (1999) A General Maximum Likelihood Analysis of Variance Components in Generalized Linear Models. Biometrics, 55, 117-128. http://dx.doi.org/10.1111/j.0006-341X.1999.00117.x
|