[1]
|
Yokota, K., Yamamoto, T., Koashi, M. and Imoto, N. (2009) Direct Observation of Hardy’s Paradox by Joint Weak Measurement with an Entangled Photon Pair. New Journal of Physics, 11, Article ID: 033011. http://dx.doi.org/10.1088/1367-2630/11/3/033011
|
[2]
|
Kostelecky, V.A. and Mewes, M. (2013) Constraints on Relativity Violations from Gamma-Ray Bursts. Physical Review Letters, 110, Article ID: 201601. http://dx.doi.org/10.1103/PhysRevLett.110.201601
|
[3]
|
Nagata, K., Laskowski, W., Wieśniak, M. and Żukowski, M. (2004) RotationalInvariance as an Additional Constraint on Local Realism. Physical Review Letters, 93, Article ID: 230403. http://dx.doi.org/10.1103/PhysRevLett.93.230403
|
[4]
|
Nagata, K. and Ahn, J. (2008) Violation of Rotational Invariance of Local Realistic Models with Two Settings. Journal of the Korean Physical Society, 53, 2216.
|
[5]
|
Nagata, K. and Ahn, J. (2008) The Conflict between Bell-Żukowski Inequality and Bell-Mermin Inequality. Modern Physics Letters A, 23, 2967. http://dx.doi.org/10.1142/S0217732308028727
|
[6]
|
Greenberger, D.M., Horne, M.A. and Zeilinger, A. (1989) Going Beyond Bell’s Theorem. In: Kafatos, M., Ed., Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Kluwer Academic, Dordrecht, 69-72. http://dx.doi.org/10.1007/978-94-017-0849-4_10
|
[7]
|
Nagata, K. (2007) Multipartite Omnidirectional Generalized Bell Inequality. Journal of Physics A: Mathematical and Theoretical, 40, 13101. http://dx.doi.org/10.1088/1751-8113/40/43/017
|
[8]
|
Redhead, M. (1989) Incompleteness, Nonlocality, and Realism. 2nd Impression, Clarendon Press, Oxford.
|
[9]
|
Peres, A. (1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht.
|
[10]
|
Einstein, A., Podolsky, B. and Rosen, N. (1935) Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777. http://dx.doi.org/10.1103/PhysRev.47.777
|
[11]
|
Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1, 195-200.
|
[12]
|
Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations of Physics, 33, 1469-1493. http://dx.doi.org/10.1023/A:1026096313729
|
[13]
|
Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An Experimental Test of Non-Local Realism. Nature, 446, 871-875. http://dx.doi.org/10.1038/nature05677
|
[14]
|
Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) Experimental Test of Nonlocal Realistic Theories without the Rotational Symmetry Assumption. Physical Review Letters, 99, Article ID: 210406. http://dx.doi.org/10.1103/PhysRevLett.99.210406
|
[15]
|
Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of Leggett’s Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407. http://dx.doi.org/10.1103/PhysRevLett.99.210407
|
[16]
|
Nagata, K. (2008) Classification of Local Realistic Theories. Journal of Physics A: Mathematical and Theoretical, 41, Article ID: 155308. http://dx.doi.org/10.1088/1751-8113/41/15/155308
|
[17]
|
Ekert, A.K. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Review Letters, 67, 661-663. http://dx.doi.org/10.1103/PhysRevLett.67.661
|
[18]
|
Scarani, V. and Gisin, N. (2001) Quantum Communication between N Partners and Bell’s Inequalities. Physical Review Letters, 87, Article ID: 117901. http://dx.doi.org/10.1103/PhysRevLett.87.117901
|
[19]
|
Brukner, Č., Żukowski, M., Pan, J.-W. and Zeilinger, A. (2004) Bell’s Inequalities and Quantum Communication Complexity. Physical Review Letters, 92, Article ID: 127901. http://dx.doi.org/10.1103/PhysRevLett.92.127901
|
[20]
|
Mermin, N.D. (1990) Extreme Quantum Entanglement in a Superposition of Macroscopically Distinct States. Physical Review Letters, 65, 1838-1840. http://dx.doi.org/10.1103/PhysRevLett.65.1838
|
[21]
|
Roy, S.M. and Singh, V. (1991) Tests of Signal Locality and Einstein-Bell Locality for Multiparticle Systems. Physical Review Letters, 67, 2761-2764. http://dx.doi.org/10.1103/PhysRevLett.67.2761
|
[22]
|
Ardehali, M. (1992) Bell Inequalities with a Magnitude of Violation That Grows Exponentially with the Number of Particles. Physical Review A, 46, 5375-5378. http://dx.doi.org/10.1103/PhysRevA.46.5375
|
[23]
|
Belinskii, A.V. and Klyshko, D.N. (1993) Interference of Light and Bell’s Theorem. Physics-Uspekhi, 36, 653-693. http://dx.doi.org/10.1070/PU1993v036n08ABEH002299
|
[24]
|
Werner, R.F. and Wolf, M.M. (2001) All-Multipartite Bell-Correlation Inequalities for Two Dichotomic Observables per Site. Physical Review A, 64, Article ID: 032112. http://dx.doi.org/10.1103/PhysRevA.64.032112
|
[25]
|
Werner, R.F. and Wolf, M.M. (2001) Bell Inequalities and Entanglement. Quantum Information & Computation, 1, 1-25.
|
[26]
|
Żukowski, M. and Brukner, Ű. (2002) Bell’s Theorem for General N-Qubit States. Physical Review Letters, 88, Article ID: 210401.
|
[27]
|
Zermelo-Fraenkel Set Theory—Wikipedia, the Free Encyclopedia.
|
[28]
|
Abian, A. (1965) The Theory of Sets and Transfinite Arithmetic. W. B. Saunders, Philadelphia.
|
[29]
|
Abian, A. and LaMacchia, S. (1978) On the Consistency and Independence of Some Set-Theoretical Axioms. Notre Dame Journal of Formal Logic, 19, 155-158. http://dx.doi.org/10.1305/ndjfl/1093888220
|
[30]
|
Devlin, K. (1996) The Joy of Sets. Springer, New York.
|
[31]
|
Fraenkel, A., Bar-Hille, Y. and Levy, A. (1973) Foundations of Set Theory. Fraenkel’s Final Word on ZF and ZFC, North Holland.
|
[32]
|
Hatcher, W. (1982) The Logical Foundations of Mathematics. Pergamon, London.
|
[33]
|
Jech, T. (2003) Set Theory. The Third Millennium Edition, Revised and Expanded, Springer, Berlin.
|
[34]
|
Kunen, K. (1980) Set Theory: An Introduction to Independence Proofs. Elsevier, Amsterdam.
|
[35]
|
Montague, R. (1961) “Semantic Closure and Non-Finite Axiomatizability” in Infinistic Methods. Pergamon, London, 45-69.
|
[36]
|
Suppes, P. (1972) Axiomatic Set Theory. Dover Reprint. Perhaps the Best Exposition of ZFC before the Independence of AC and the Continuum Hypothesis, and the Emergence of Large Cardinals. Includes Many Theorems.
|
[37]
|
Takeuti, G. and Zaring, W.M. (1971) Introduction to Axiomatic Set Theory. Springer Verlag, New York.
|
[38]
|
Tarski, A. (1939) On Well-Ordered Subsets of Any Set. Fundamenta Mathematicae, 32, 176-183.
|
[39]
|
Tiles, M. (2004) The Philosophy of Set Theory. Dover Reprint. Weak on Metatheory; the Author Is Not a Mathematician.
|
[40]
|
Tourlakis, G. (2003) Lectures in Logic and Set Theory. Volume 2, Cambridge University Press, Cambridge.
|
[41]
|
van Heijenoort, J. (1967) From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931. Harvard University Press, Cambridge.
|
[42]
|
Zermelo, E. (1908) Untersuchungen uber die Grundlagen der Mengenlehre I. Mathematische Annalen, 65, 261-281. http://dx.doi.org/10.1007/BF01449999
|
[43]
|
van Heijenoort, J. (1967) Investigations in the Foundations of Set Theory. In: van Heijenoort, J., Ed., From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931, Harvard University Press, Cambridge, MA, 199-215.
|
[44]
|
Zermelo, E. (1930) Uber Grenzzablen und Mengenbereiche. Fundamenta Mathematicae, 16, 29-47.
|
[45]
|
Nagata, K. and Nakamura, T. (2011) Does Singleton Set Meet Zermelo-Fraenkel Set Theory with the Axiom of Choice? Advanced Studies in Theoretical Physics, 5, 57.
|
[46]
|
Nagata, K. and Nakamura, T. (2010) Can von Neumann’s Theory Meet the Deutsch-Jozsa Algorithm? International Journal of Theoretical Physics, 49, 162-170. http://dx.doi.org/10.1007/s10773-009-0189-5
|
[47]
|
Nagata, K., Ren, C.-L. and Nakamura, T. (2011) Whether Quantum Computation Can Be Almighty. Advanced Studies in Theoretical Physics, 5, 1-14.
|
[48]
|
Hess, K. and Philipp, W. (2002) Exclusion of Time in the Theorem of Bell. Europhysics Letters (EPL), 57, 775-781. http://dx.doi.org/10.1209/epl/i2002-00578-y
|
[49]
|
Hess, K. and Philipp, W. (2005) The Bell Theorem as a Special Case of a Theorem of Bass. Foundations of Physics, 35, 1749-1767. http://dx.doi.org/10.1007/s10701-005-6520-y
|
[50]
|
Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
|
[51]
|
Gudder, S.P. (1980) Proposed Test for a Hidden Variables Theory. International Journal of Theoretical Physics, 19, 163-168. http://dx.doi.org/10.1007/BF00669767
|
[52]
|
Ballentine, L.E. (1990) Quantum Mechanics. Prentice-Hall, Englewood Cliffs.
|
[53]
|
Zimba, J.R. and Clifton, R.K. (1998) Valuations on Functionally Closed Sets of Quantum Mechanical Observables and von Neumann’s “No-Hidden-Variables” Theorem. In: Dieks, D. and Vermaas, P., Eds., The Modal Interpretation of Quantum Mechanics, Kluwer Academic Publishers, Dordrecht, 69-101.
|
[54]
|
Genovese, M. (2007) Research on Hidden Variable Theories: A Review of Recent Progresses. http://arxiv.org/abs/quant-ph/0701071
|
[55]
|
Aspect, A., Dalibard, J. and Roger, G. (1982) Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Physical Review Letters, 49, 1804-1807. http://dx.doi.org/10.1103/PhysRevLett.49.1804
|
[56]
|
Hellmuth, T., Walther, H., Zajonc, A. and Schleich, W. (1987) Delayed-Choice Experiments in Quantum Interference. Physical Review A, 35, 2532-2541. http://dx.doi.org/10.1103/PhysRevA.35.2532
|
[57]
|
Kwiat, P.G. (1998) Experimental and Theoretical Progress in Interaction-Free Measurements. Physica Scripta, T76, 115. http://dx.doi.org/10.1238/Physica.Topical.076a00115
|
[58]
|
Cristian, J. (2007) Disproof of Bell’s Theorem by Clifford Algebra Valued Local Variables. http://arxiv.org/abs/quant-ph/0703179
|