Can Hidden Variables Theories Meet Quantum Computation?

DOI: 10.4236/oalib.1101804   PDF   HTML   XML   713 Downloads   1,099 Views  


We study the relation between hidden variables theories and quantum computation. We discuss an inconsistency between a hidden variables theory and controllability of quantum computation. To derive the inconsistency, we use the maximum value of the square of an expected value. We propose a solution of the problem by using new hidden variables theory. Also we discuss an inconsistency between hidden variables theories and the double-slit experiment as the most basic experiment in quantum mechanics. This experiment can be an easy detector to Pauli observable. We cannot accept hidden variables theories to simulate the double-slit experiment in a specific case. Hidden variables theories may not depicture quantum detector. This is a quantum measurement theoretical profound problem.

Share and Cite:

Nagata, K. and Nakamura, T. (2015) Can Hidden Variables Theories Meet Quantum Computation?. Open Access Library Journal, 2, 1-12. doi: 10.4236/oalib.1101804.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[2] Feynman, R.P., Leighton, R.B. and Sands, M. (1965) Lectures on Physics. Volume 3, Quantum Mechanics, Addison-Wesley Publishing Company.
[3] Redhead, M. (1989) Incompleteness, Nonlocality, and Realism. 2nd Edition, Clarendon Press, Oxford.
[4] Peres, A. (1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht.
[5] Sakurai, J.J. (1995) Modern Quantum Mechanics. Addison-Wesley Publishing Company.
[6] Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[7] Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations of Physics, 33, 1469-1493.
[8] Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An Experimental Test of Non-Local Realism. Nature (London), 446, 871-875.
[9] Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) Experimental Test of Nonlocal Realistic Theories without the Rotational Symmetry Assumption. Physical Review Letters, 99, Article ID: 210406.
[10] Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of Leggett’s Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407.
[11] Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. Series A, 400, 97.
[12] Jones, J.A. and Mosca, M. (1998) Implementation of a Quantum Algorithm on a Nuclear Magnetic Resonance Quantum Computer. The Journal of Chemical Physics, 109, 1648.
[13] Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L. and Blatt, R. (2003) Implementation of the Deutsch-Jozsa Algorithm on an Ion-Trap Quantum Computer. Nature, 421, 48-50.
[14] de Oliveira, A.N., Walborn, S.P. and Monken, C.H. (2005) Implementing the Deutsch Algorithm with Polarization and Transverse Spatial Modes. Journal of Optics B: Quantum and Semiclassical Optics, 7, 288-292.
[15] Kim, Y.-H. (2003) Single-Photon Two-Qubit Entangled States: Preparation and Measurement. Physical Review A, 67, Article ID: 040301(R).
[16] Mohseni, M., Lundeen, J.S., Resch, K.J. and Steinberg, A.M. (2003) Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm. Physical Review Letters, 91, Article ID: 187903.
[17] Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S. and Zeilinger, A. (2007) Experimental Realization of Deutsch’s Algorithm in a One-Way Quantum Computer. Physical Review Letters, 98, Article ID: 140501.
[18] Schon, C. and Beige, A. (2001) Analysis of a Two-Atom Double-Slit Experiment Based on Environment-Induced Measurements. Physical Review A, 64, Article ID: 023806.
[19] Nagata, K. (2010) Implementation of the Deutsch-Jozsa Algorithm Violates Nonlocal Realism. The European Physical Journal D, 56, 441-444.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.