Share This Article:

The Deutsch-Jozsa Algorithm Can Be Used for Quantum Key Distribution

DOI: 10.4236/oalib.1101798    663 Downloads   1,075 Views   Citations

ABSTRACT

We review the new type of Deutsch-Jozsa algorithm proposed in [K. Nagata and T. Nakamura, Int. J. Theor. Phys. 49, 162 (2010)]. We suggest that the Deutsch-Jozsa algorithm can be used for quantum key distribution. Alice sends input N 1 partite uncorrelated state to a black box. Bob measures output state. Now, Alice and Bob have promised to use a function f which is one of two kinds: either the value of f is constant or balanced. To Eve, it is secret. Alice’s and Bob’s goal is to determine with certainty whether they have chosen a constant or a balanced function. Alice and Bob get one bit if they determine the function f. The speed to get one bit improves by a factor of 2N. This may improve the speed to establish quantum key distribution by a factor of 2N.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Nagata, K. and Nakamura, T. (2015) The Deutsch-Jozsa Algorithm Can Be Used for Quantum Key Distribution. Open Access Library Journal, 2, 1-6. doi: 10.4236/oalib.1101798.

References

[1] von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton.
[2] Feynman, R.P., Leighton, R.B. and Sands, M. (1965) Lectures on Physics. Volume 3, Quantum Mechanics, Addison-Wesley Publishing Company.
[3] Redhead, M. (1989) Incompleteness, Nonlocality, and Realism. 2nd Edition, Clarendon Press, Oxford.
[4] Peres, A. (1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht.
[5] Sakurai, J.J. (1995) Modern Quantum Mechanics. Addison-Wesley Publishing Company.
[6] Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge.
[7] Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An Incompatibility Theorem. Foundations of Physics, 33, 1469-1493.
http://dx.doi.org/10.1023/A:1026096313729
[8] Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) An Experimental Test of Non-Local Realism. Nature (London), 446, 871-875.
http://dx.doi.org/10.1038/nature05677
[9] Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M. and Zeilinger, A. (2007) Experimental Test of Nonlocal Realistic Theories without the Rotational Symmetry Assumption. Physical Review Letters, 99, Article ID: 210406.
http://dx.doi.org/10.1103/PhysRevLett.99.210406
[10] Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of Leggett’s Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407.
http://dx.doi.org/10.1103/PhysRevLett.99.210407
[11] Deutsch, D. (1985) Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. Series A, 400, 97.
http://dx.doi.org/10.1098/rspa.1985.0070
[12] Jones, J.A. and Mosca, M. (1998) Implementation of a Quantum Algorithm on a Nuclear Magnetic Resonance Quantum Computer. The Journal of Chemical Physics, 109, 1648.
http://dx.doi.org/10.1063/1.476739
[13] Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L. and Blatt, R. (2003) Implementation of the Deutsch-Jozsa Algorithm on an Ion-Trap Quantum Computer. Nature, 421, 48-50.
http://dx.doi.org/10.1038/nature01336
[14] de Oliveira, A.N., Walborn, S.P. and Monken, C.H. (2005) Implementing the Deutsch Algorithm with Polarization and Transverse Spatial Modes. Journal of Optics B: Quantum and Semiclassical Optics, 7, 288-292.
http://dx.doi.org/10.1088/1464-4266/7/9/009
[15] Kim, Y.-H. (2003) Single-Photon Two-Qubit Entangled States: Preparation and Measurement. Physical Review A, 67, Article ID: 040301(R).
[16] Mohseni, M., Lundeen, J.S., Resch, K.J. and Steinberg, A.M. (2003) Experimental Application of Decoherence-Free Subspaces in an Optical Quantum-Computing Algorithm. Physical Review Letters, 91, Article ID: 187903.
http://dx.doi.org/10.1103/PhysRevLett.91.187903
[17] Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S. and Zeilinger, A. (2007) Experimental Realization of Deutsch’s Algorithm in a One-Way Quantum Computer. Physical Review Letters, 98, Article ID: 140501.
http://dx.doi.org/10.1103/PhysRevLett.98.140501
[18] Nagata, K. and Nakamura, T. (2010) Can von Neumann’s Theory Meet the Deutsch-Jozsa Algorithm? International Journal of Theoretical Physics, 49, 162-170.
http://dx.doi.org/10.1007/s10773-009-0189-5

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.