[1]
|
Bradley, P. (2006) The History of Simulation in Medical Education and Possible Future Directions. Medical Education, 40, 254-262. http://dx.doi.org/10.1111/j.1365-2929.2006.02394.x
|
[2]
|
Mıdık, Ö. and Kartal, M. (2010) Simülasyona Dayalı Tıp Eğitimi. Marmara Medical Journal, 23, 389-399.
|
[3]
|
Van de Vosse, F.N. (2003) Mathematical Modelling of the Cardiovascular System. Journal of Engineering Mathematics, 47, 175-183. http://dx.doi.org/10.1023/B:ENGI.0000007986.69547.5a
|
[4]
|
Khader, S.M.A., Zubair Md., P.R., Rao, B.V.R.K. and Kamath, S.G. (2009) A Comparative Study of Transient Flow through Cerebral Aneurysms Using CFD. World Academy of Science, Engineering and Technology, 36, 606-610.
|
[5]
|
Filipovic, N., Ivanovic, M., Krstajic, D. and Kojic, M. (2011) Hemodynamic Flow Modeling through an Abdominal Aorta Aneurysm Using Data Mining Tools. IEEE Transactions on Information Thechnology in Biomedicine, 15, 189-194. http://dx.doi.org/10.1109/TITB.2010.2096541
|
[6]
|
Shojima, M., Oshima, M., Takagi, K., Torii, R., Nagata, K., Shirouzu, I., et al. (2005) Role of the Bloodstream Impacting Force and the Local Pressure Elevation in the Rupture of Cerebral Aneurysms. Stroke, 36, 1933-1938. http://dx.doi.org/10.1161/01.STR.0000177877.88925.06
|
[7]
|
Steinman, D.A. (2002) Image-Based Computational Fluid Dynamics Modeling in Realistic Arterial Geometries. Annals of Biomedical Engineering, 30, 483-497. http://dx.doi.org/10.1114/1.1467679
|
[8]
|
Pehlivan, F. (2015) Biyofizik. 8th Edition, Pelikan Yayıncılık, Ankara.
|
[9]
|
Jeong, W. and Rhee, K. (2012) Hemodynamics of Cerebral Aneurysms: Computational Analyses of Aneurysm Progress and Treatment. Computational and Mathematical Methods in Medicine, 2012, Article ID: 782801. http://dx.doi.org/10.1155/2012/782801
|
[10]
|
Filipovic, N., Milasinovic, D., Zdravkovic, N., Böckler, D. and Tengg-Kobligk, H. (2011) Impact of Aortic Repair Based on Flow Field Computer Simulation within the Thoracic Aorta. Computer Methods and Programs in Biomedicine, 10, 243-252. http://dx.doi.org/10.1016/j.cmpb.2011.01.005
|
[11]
|
Yoganathan, A.P., Cape, E.G., Sung, H.W., Williams, F.P. and Jimoh, A. (1988) Review of Hydrodynamic Principles for the Cardiologist: Applications to the Study of Blood Flow and Jets by Imaging Techniques. Journal of the American College of Cardiology, 12, 1344-1353. http://dx.doi.org/10.1016/0735-1097(88)92620-4
|
[12]
|
Simmonds, M.J., Meiselman, H.J. and Baskurt, O.K. (2013) Blood Rheology and Aging. Journal of Geriatric Cardiology, 10, 291-301.
|
[13]
|
Malek, A.M., Alper, S.L. and Izumo, S. (1999) Hemodynamic Share Stress and Its Role in Atherosclerosis. JAMA, 282, 2035-2042. http://dx.doi.org/10.1001/jama.282.21.2035
|
[14]
|
Ai, L., Yu, H., Takabe, W., Paraboschi, A., Yu, F., Kim, E.S., et al. (2009) Optimization of Intravascular Shear Stress Assessment in Vivo. Journal of Biomechanics, 42, 1429-1437. http://dx.doi.org/10.1016/j.jbiomech.2009.04.021
|
[15]
|
Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T.E. (2007) Influence of Wall Elasticity in Patient-Specific Hemodynamic Simulations. Computers & Fluids, 36, 160-168. http://dx.doi.org/10.1016/j.compfluid.2005.07.014
|
[16]
|
Wentzel, J.J., Chatzizisis, Y.S., Gijsen, F.J.H., Giannoglou, G.D., Feldman, C.L. and Stone, P.H. (2012) Endothelial Shear Stress in the Evolution of Coronary Atherosclerotic Plaque and Vascular Remodelling: Current Understanding and Remaining Questions. Cardiovascular Research, 96, 234-243. http://dx.doi.org/10.1093/cvr/cvs217
|
[17]
|
Miljkovic, O., Ivanovic, M., Filipovic, N. and Kojic, M. (2008) AI Models of the Hemodynamic Simulation. Journal of the Serbian Society for Computational Mechanics, 2, 59-72.
|