Multilayer Coulomb Structures: Mathematical Principia of Microcosm Mechanics


The problem of a rotating planar multilayer structure with Coulomb interaction is formulated in the paper. The absence of solutions of the problem is proven. Based on this problem the method of constructing planar structures with differential rotation of the layers is developed. A number of structures are received and their dynamics and stability are studied by numerical methods with assistance of the system Galactica. The planar structures are unstable. Identified ways are found to improve the stability of multilayer structures and construct such structures, which could be models of atoms. The paper is of interest for specialists in the field of mechanics of microcosm and can be used by students when doing term papers and dissertations. The different mathematical methods are developed to solve problems in the mechanics of the microworld. They are in free access: In essence, the paper offers a new physics without theory of relativity and quantum mechanics. It aims for receiving a real knowledge of the microcosm. The paper is written in Russian. It is recommended to translate it into English, Chinese, Hindi, Persian and other national languages. This will allow the younger generation using the paper to cognize the real macrocosm.

Share and Cite:

Smulsky, J. (2015) Multilayer Coulomb Structures: Mathematical Principia of Microcosm Mechanics. Open Access Library Journal, 2, 1-47. doi: 10.4236/oalib.1101661.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Власов, А.Д. (1993) Классическое направление в квантовой механике. М.: Московский радиотехнический институт РАН, 229 p.
[2] Kanarev, P.M. (2009) The Spectrum of the Universe. Galilean Electrodynamics, 20, 13-17.
[3] Канарёв, Ф.М. (2013) Закон формирования спектров атомов и ионов.
[4] Gryziński, M. (1987) Spin-Dynamical Theory of the Wave-Corpuscular Duality. International Journal of Theoretical Physics, 26, 967-980.
[5] Gryziński, M. (1965) Classical Theory of Atomic Collisions. I. Theory of Inelastic Collisions. Physical Review A, 138, 336-358.
[6] Gryziński, M. (1970) Ramsauer Effect as a Result of the Dynamic Structure of the Atomic Shell. Physical Review Letters, 24, 45-47.
[7] Gryziński, M. (1959) Classical Theory of Electronic and Ionic Inelastic Collisions. Physical Review, 115, 374-383.
[8] Gryziński, M. (1957) Stopping Power of a Medium for Heavy, Charged Particles. Physical Review A, 107, 1471-1475.
[9] Smulsky, J.J. (2012) The System of Free Access Galactica to Compute Interactions of N-Bodies. International Journal of Modern Education and Computer Science, 4, 1-20.
[10] Смульский, И.И. (2013) Осесимметричное кулоновское взаимодействие и неустойчивость орбит. Тюмень. Институт криосферы Земли СО РАН. 30 с. Деп . в ВИНИТИ 28.10.2013, № 304-В2013.
[11] Smulsky J.J. (2014) Axisymmetric Coulomb Interaction and Research of Its Stability by System Galactica. Open Access Library Journal, 1, 1-23.
[12] Смульский, И.И. (2012) Система Galactica. Тюмень. Институт криосферы Земли СО РАН.
[13] Smulsky J.J. (2014) Module of System Galactica with Coulomb’s Interaction. International Journal of Modern Education and Computer Science, 6, 1-13.
[14] Смульский, И.И. (2003) Осесимметричная задача гравитационного взаимодействия N-тел. Математическое моделирование, 15, 27-36.
[15] Smul'skii, I.I. (2011) Multilayer Ring Structures. Physics of Particles and Nuclei Letters, 8, 436-440.
[16] Смульский, И.И. (2013) Осесимметричные многослойные вращающиеся структуры. Тюмень. Институт криосферы Земли СО РАН. 27 с.—Рус. Деп. в ВИНИТИ 28.10.2013, № 303-В2013.
[17] Смульский, И.И. (1999) Теория взаимодействия. Новосибирск: Из-во Новосиб. ун-та, НИЦ ОИГГМ СО РАН, 294 p.
[18] Смульский, И.И. (2014) Электродинамика движущихся тел. Определение сил и расчет движений. Palmarium Academic Publishing, Saarbrucken, 324 с.
[19] Смульский, И.И. (1995) Траектории при взаимодействии двух тел, зависящем от относительного расстояния и скорости. Математическое Моделирование, 7, 117-126.
[20] Smulsky, J.J. (2002) The New Fundamental Trajectories: Part 1. Hyperbolic/Elliptic Trajectories. Galilcan Electrodynamics, 13, 23-28.
[21] Smulsky, J.J. (2002) The New Fundamental Trajectories: Part 2. Parabolic/Elliptic Trajectories. Galilcan Electrodynamics, 13, 47-51.
[22] Smulsky J.J. (1994) The New Approach and Superlight Particle Production. Physics Essays, 7, 153-166.
[23] Smulsky, J.J. (2011) New Components of the Mercury’s Perihelion Precession. Natural Science, 3, 268-274.
[24] Smulsky, J.J. and Smulsky, Ya.J. (2012) Dynamic Problems of the Planets and Asteroids, and Their Discussion. International Journal of Astronomy and Astrophysics, 2, 129-155.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.