Share This Article:

Micronization of Cetirizine Using Rapid Expansion of Supercritical Carbon Dioxide

Abstract Full-Text HTML XML Download Download as PDF (Size:1957KB) PP. 1-14
DOI: 10.4236/oalib.1101277    578 Downloads   896 Views   Citations

ABSTRACT

During the past decades, producing micro- and nano-particles of drugs is gaining attention since it is possible to modify the solubility of insoluble drugs in the gastronical fluids significantly. Respect to this fact, in the current investigation, rapid expansion of supercritical carbon dioxide (RESS) for fabricating the micro-particles of cetirizine is investigated. In this way, different operational conditions including extraction pressure (160 - 220 bar), extraction temperature (308 - 328 K), nozzle length (1 - 8 mm), and nozzle diameter (450 - 1700 μm) are examined. The performed experiments revealed that among the examined operational conditions, nozzle diameter and extraction pressure introduce significant effects on the reduction of particle size compared with the other examined parameters. The results revealed that it is possible to reduce the cetirizine particles from 98.52 μm to 0.53 μm using RESS. In addition, scanning electron microscopy (SEM) analysis is performed to investigate the effect of different operational parameters on the morphology of the particles of cetirizine. The results demonstrate that RESS not only is able to reduce the particle size of the cetirizine, but also is able to change the morphology of the cetirizine particles from the irregular shape to spherical form.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hezave, A. , Lashkarbolooki, M. and Esmaeilzadeh, F. (2015) Micronization of Cetirizine Using Rapid Expansion of Supercritical Carbon Dioxide. Open Access Library Journal, 2, 1-14. doi: 10.4236/oalib.1101277.

References

[1] Pouton, C.W. (2006) Formulation of Poorly Water-Soluble Drugs for Oral Administration: Physicochemical and Physiological Issues and the Lipid Formulation Classification System. European Journal of Pharmaceutical Sciences, 29, 278-287.
http://dx.doi.org/10.1016/j.ejps.2006.04.016
[2] Lieberman, H.A., Rieger, M.M. and Banker, G.S. (1996) Pharmaceutical Dosage Forms—Disperse Systems. 2nd Edition, Informa Health Care.
[3] Rasenack, N. and Müller, B.W. (2004) Micron-Size Drug Particles: Common and Novel Micronization Techniques. Pharmaceutical Development and Technology, 9, 1-13.
http://dx.doi.org/10.1081/PDT-120027417
[4] Chang, C.J. and Randolph, A.D. (1989) Precipitation of Microsize Organic Particles from Supercritical Fluids. AIChE Journal, 35, 1876-1882.
http://dx.doi.org/10.1002/aic.690351114
[5] Debenedetti, P.G., Tom, J.W., Kwauk, X. and Yeo, S.D. (1993) Rapid Expansion of Supercritical Solutions (RESS): Fundamentals and Applications. Fluid Phase Equilibria, 82, 311-321.
http://dx.doi.org/10.1016/0378-3812(93)87155-T
[6] Matson, D.W., Fulton, J.L., Petersen, R.C. and Smith, R.D. (1987) Rapid Expansion of Supercritical Fluid Solutions: Solute Formation of Powders, Thin Films, and Fibers. Industrial & Engineering Chemistry Research, 26, 2298-2306.
http://dx.doi.org/10.1021/ie00071a021
[7] Mawson, S., Johnston, K.P., Combes, J.R. and Desimone, J.M. (1995) Formation of Poly(1,1,2,2-tetrahydroperfluo-rodecyl Acrylate) Submicron Fibers and Particles from Supercritical Carbon Dioxide Solutions. Macromolecules, 28, 3182-3191.
http://dx.doi.org/10.1021/ma00113a021
[8] Mishima, K., Matsuyama, K., Tanabe, D., Yamauchi, S., Young, T.J. and Johnston, K.P. (2000) Microencapsulation of Proteins by Rapid Expansion of Supercritical Solution with a Nonsolvent. AIChE Journal, 46, 857-865.
http://dx.doi.org/10.1002/aic.690460418
[9] Jung, J. and Perrut, M. (2001) Particle Design Using Supercritical Fluids: Literature and Patent Survey. The Journal of Supercritical Fluids, 20, 179-219.
http://dx.doi.org/10.1016/S0896-8446(01)00064-X
[10] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Micronization of Drug Particles via RESS Process. The Journal of Supercritical Fluids, 52, 84-98.
http://dx.doi.org/10.1016/j.supflu.2009.09.006
[11] McHugh, M.A. and Krukonis, V.J. (1994) Supercritical Fluid Extraction: Principles and Practice. 2nd Edition, Butterworth-Heinemann, Boston.
[12] Domingo, C., Berends, E. and van Rosmalen, G.M. (1997) Precipitation of Ultrafine Organic Crystals from the Rapid Expansion of Supercritical Solutions over a Capillary and a Frit Nozzle. The Journal of Supercritical Fluids, 10, 39-55.
http://dx.doi.org/10.1016/S0896-8446(97)00011-9
[13] Reverchon, E., Osseo, L.S. and Gorgoglione, D. (1994) Supercritical CO2 Extraction of Basil Oil: Characterization of Products and Process Modeling. The Journal of Supercritical Fluids, 7, 185-190.
http://dx.doi.org/10.1016/0896-8446(94)90024-8
[14] Reverchon, E. (1997) Supercritical Fluid Extraction and Fractionation of Essential Oils and Related Products. The Journal of Supercritical Fluids, 10, 1-37.
http://dx.doi.org/10.1016/S0896-8446(97)00014-4
[15] Liu, G.T. and Nagahama, K. (1996) Application of Rapid Expansion of Supercritical Solutions in the Crystallization Separation. Industrial & Engineering Chemistry Research, 35, 4626-4634.
http://dx.doi.org/10.1021/ie960142v
[16] Alessi, A., Cortesi, A., Kikic, I., Foster, N.R., Macnaughton, S.J. and Colombo, I. (1996) Particle Production of Steroid Drugs Using Supercritical Fluid Processing. Industrial & Engineering Chemistry Research, 35, 4718-4726.
http://dx.doi.org/10.1021/ie960202x
[17] Phillips, E.M. and Stella, V.J. (1993) Rapid Expansion from Supercritical Solutions: Application to Pharmaceutical Processes. International Journal of Pharmaceutics, 94, 1-10.
http://dx.doi.org/10.1016/0378-5173(93)90002-W
[18] Türk, M., Hils, P., Helfgen, B., Schaber, K., Martin, H.-J. and Wahl, M.A. (2002) Micronization of Pharmaceutical Substances by the Rapid Expansion of Supercritical Solutions (RESS): A Promising Method to Improve Bioavailability of Poorly Soluble Pharmaceutical Agents. The Journal of Supercritical Fluids, 22, 75-84.
http://dx.doi.org/10.1016/S0896-8446(01)00109-7
[19] Oliveira, J.V., Pinto, J.C. and Dariva, C. (2005) Application of a Modified RESS Process for Polypropylene Microparticle Production. Fluid Phase Equilibria, 228-229, 381-388.
http://dx.doi.org/10.1016/j.fluid.2004.10.005
[20] Debenedetti, P.G., Tom, J.W., Kwauk, X. and Yeo, S.D. (1993) Rapid Expansion of Supercritical Solutions (RESS): Fundamentals and Applications. Fluid Phase Equilibria, 82, 311-321.
http://dx.doi.org/10.1016/0378-3812(93)87155-T
[21] Hirunsit, P., Huang, Z., Srinophakun, T., Charoenchaitrakool, M. and Kawi, S. (2005) Particle Formation of Ibuprofen-Supercritical CO2 System from Rapid Expansion of Supercritical Solutions (RESS): A Mathematical Model. Powder Technology, 154, 83-94.
http://dx.doi.org/10.1016/j.powtec.2005.03.020
[22] Subra, P., Berroy, P., Vega, A. and Domingo, C. (2004) Process Performances and Characteristics of Powders Produced Using Supercritical CO2 as Solvent and Antisolvent. Powder Technology, 142, 13-22.
http://dx.doi.org/10.1016/j.powtec.2004.03.004
[23] Hernandez, R.S., Ruiz-Trevino, F.A., Ortiz-Estrada, C., Luna-Barcenas, G., Prokhorov, Y., Alvarado, J.F.J. and Sanchez, I.C. (2009) Chitin Microstructure Formation by Rapid Expansion Techniques with Supercritical Carbon Dioxide. Industrial & Engineering Chemistry Research, 48, 769-778.
http://dx.doi.org/10.1021/ie800084x
[24] Tom, J.W., Debenedetti, P.G. and Jerome, R. (1994) Precipitation of Poly(l-lactic Acid) and Composite Poly(l-lactic Acid)-Pyrene Particles by Rapid Expansion of Supercritical Solutions. The Journal of Supercritical Fluids, 7, 9-29.
http://dx.doi.org/10.1016/0896-8446(94)90003-5
[25] Tom, J.W. and Debenedetti, P.G. (1991) Formation of Bioerodible Polymeric Microspheres and Microparticles by Rapid Expansion of Supercritical Solutions. Biotechnology Progress, 7, 403-411.
http://dx.doi.org/10.1021/bp00011a004
[26] Huang, J. and Moriyoshi, T. (2006) Fabrication of Fine Powders by RESS with a Clearance Nozzle. The Journal of Supercritical Fluids, 37, 292-297.
http://dx.doi.org/10.1016/j.supflu.2005.11.024
[27] Subra, P., Berroy, P., Saurina, J. and Domingo, C. (2004) Influence of Expansion Conditions on the Characteristics of Cholesterol Crystals Analyzed by Statistical Design. The Journal of Supercritical Fluids, 31, 313-322.
http://dx.doi.org/10.1016/j.supflu.2003.11.009
[28] Kayrak, D., Akman, U. and Hortacsu, O. (2003) Micronization of Ibuprofen by RESS. The Journal of Supercritical Fluids, 26, 17-31.
http://dx.doi.org/10.1016/S0896-8446(02)00248-6
[29] Hezave, A.Z. and Esmaeilzadeh, F. (2011) The Effects of RESS Parameters on the Diclofenac Particle Size. Advanced Powder Technology, 22, 587-595.
http://dx.doi.org/10.1016/j.apt.2010.08.010
[30] Hezave, A.Z., Aftab, S. and Esmaeilzadeh, F. (2010) Micronization of Creatine Monohydrate via Rapid Expansion of Supercritical Solution (RESS). The Journal of Supercritical Fluids, 55, 316-324.
http://dx.doi.org/10.1016/j.supflu.2010.05.009
[31] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Micronization of Drug Particles via RESS Process. The Journal of Supercritical Fluids, 52, 84-98.
http://dx.doi.org/10.1016/j.supflu.2009.09.006
[32] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Investigation of the Rapid Expansion of Supercritical Solution Parameters Effects on Size and Morphology of Cephalexin Particles. Journal of Aerosol Science, 41, 1090-1102.
http://dx.doi.org/10.1016/j.jaerosci.2010.08.004
[33] Hezave, A.Z. and Esmaeilzadeh, F. (2010) Crystallization of Micro Particles of Sulindac Using Rapid Expansion of Supercritical Solution. Journal of Crystal Growth, 312, 3373-3383.
http://dx.doi.org/10.1016/j.jcrysgro.2010.07.033
[34] Hezave, A.Z., Aftab, S. and Esmaeilzadeh, F. (2010) Micronization of Ketoprofen by the Rapid Expansion of Supercritical Solution Process. Journal of Aerosol Science, 41, 821-833.
http://dx.doi.org/10.1016/j.jaerosci.2010.01.006
[35] Hezave, A.Z., Mowla, A. and Esmaeilzadeh, F. (2011) Cetirizine Solubility in Supercritical CO2 at Different Pressures and Temperatures. The Journal of Supercritical Fluids, 58, 198-203.
http://dx.doi.org/10.1016/j.supflu.2011.05.017
[36] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Recrystallization of Microparticles of Fenoprofen Using Rapid Expansion of Supercritical Solution. Journal of Dispersion Science and Technology, 33, 1106-1115.
http://dx.doi.org/10.1080/01932691.2011.599231
[37] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Precipitation of Micronized Piroxicam Particles via RESS. Journal of Dispersion Science and Technology, 33, 990-999.
http://dx.doi.org/10.1080/01932691.2011.590438
[38] Hezave, A.Z. and Esmaeilzadeh, F. (2012) Fabrication of Micron Level Particles of Amoxicillin by Rapid Expansion of Supercritical Solution. Journal of Dispersion Science and Technology, 33, 1419-1428.
http://dx.doi.org/10.1080/01932691.2011.620883
[39] Hezave, A.Z., Mowla, A. and Esmaeilzadeh, F. (2011) Cetirizine Solubility in Supercritical CO2 at Different Pressures and Temperatures. The Journal of Supercritical Fluids, 58, 198-203.
http://dx.doi.org/10.1016/j.supflu.2011.05.017
[40] Poling, B.E., Prausnitz, J.M. and O’Cornnell, J.P. (2004) The Properties of Gases and Liquids. 5th Edition, McGraw-Hill, New York.
[41] Huang, Z., Sun, G.B., Chiew, Y.C. and Kawi, S. (2005) Formation of Ultrafine Aspirin Particles through Rapid Expansion of Supercritical Solutions (RESS). Powder Technology, 160, 127-134.
http://dx.doi.org/10.1016/j.powtec.2005.08.024
[42] Liu, G.T. and Nagahama, K. (1996) Application of Rapid Expansion of Supercritical Solutions in the Crystallization Separation. Industrial & Engineering Chemistry Research, 35, 4626-4634.
http://dx.doi.org/10.1021/ie960142v
[43] Wang, J., Chen, J. and Yang, Y. (2005) Micronization of Titanocene Dichloride by Rapid Expansion of Supercritical Solution and Its Ethylene Polymerization. The Journal of Supercritical Fluids, 33, 159-172.
http://dx.doi.org/10.1016/j.supflu.2004.05.006
[44] Yildiz, N., Tuna, Ş., Döker, O. and Çalimli, A. (2007) Micronization of Salicylic Acid and Taxol (Paclitaxel) by Rapid Expansion of Supercritical Fluids (RESS). The Journal of Supercritical Fluids, 41, 440-451.
http://dx.doi.org/10.1016/j.supflu.2006.12.012
[45] Reverchon, E., Donsi, G. and Gorgoglione, D. (1993) Salicylic Acid Solubilization in Supercritical CO2 and Its Micronization by RESS. The Journal of Supercritical Fluids, 6, 241-248.
http://dx.doi.org/10.1016/0896-8446(93)90034-U
[46] Kayrak, D., Akman, U. and Hortacsu, Ö. (2003) Micronization of Ibuprofen by RESS. The Journal of Supercritical Fluids, 26, 17-31.
http://dx.doi.org/10.1016/S0896-8446(02)00248-6

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.