Alkaline Earth (Ca) and Transition Metal (Ni) Doping on The Transport Properties Of Y1-Xcaxba2(Cu1-Yniy)3O7-δ Superconductors
Dinesh Varshney, Arvind Yogi, Neha Dodiya, Irfan Mansuri
DOI: 10.4236/jmp.2011.28109   PDF   HTML     3,841 Downloads   7,904 Views   Citations


We report the results of dc resistivity, ac susceptibility, and thermopower study of partial substitution at Y (A site by Ca) and at Cu (B site by Ni) polycrystalline superconductors. The iodometric analysis reveals that the oxygen deficiency,δ,for YBa2Cu3O7-δ(S-I),Y0.9Ca0.1 Ba2Cu3O7-δ(S-II),Y0.8Ca0.2Ba2Cu3O7-δ(S-III) and Y0.9Ca0.1 Ba2(Cu0.99Ni0.01)3O7-δ(S-IV) samples are 0.16, 0.30, 0.39 and 0.29 respectively. The x-ray powder diffraction pattern indicates that all samples are in orthorhombic phase. The dc resistivity, ac susceptiblity and the thermopower measurements shows that the divalent Calcium doping at the trivalent Y site and transition metal Ni doping at Cu site causes a suppression of the superconducting transition temperature (Tc) from 89 to 81 K. The ac susceptibility confirms the ferromagnetic to antiferromagnetic phases at a defined Tc. The room temperature S value increases for Ca substituted YBa2Cu3O7-δwhile to that it decreases for Y0.9Ca0.1Ba2(Cu0.99Ni0.01)3O6.71. The above feature is an indicative of enhanced number of mobile holes for the Ca doped YBa2Cu3O7-δ, while to that the charge carrier density is reduced in simultaneous A (Ca) and B (Ni) site doped sample.

Share and Cite:

D. Varshney, A. Yogi, N. Dodiya and I. Mansuri, "Alkaline Earth (Ca) and Transition Metal (Ni) Doping on The Transport Properties Of Y1-Xcaxba2(Cu1-Yniy)3O7-δ Superconductors," Journal of Modern Physics, Vol. 2 No. 8, 2011, pp. 922-927. doi: 10.4236/jmp.2011.28109.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. G. Bednorz and K. A. Muller, “Possible highTc Supercon-ductivity in the Ba-La-Cu-O System,” Zeitschrift für Physik B, Vol. 64, No. 2, 1986, pp. 189- 193.
[2] W Guan, J. C. Chen and S. H. Cheng, “Ion-Size Effect on Transport Properties in R0.9Ca0.1Ba2Cu3O7-δ Systems (R = Tm, Ho, Gd, and Nd),” Physical Review B, Vol. 54, No. 5, 1996, pp. 3580-3588. doi:10.1103/PhysRevB.54.3580
[3] V. P. S. Awana, A. Tu-lapurkar, S. K. Mallik and A. V. Narlikar, “Role of Ca in En-hancing the Superconductivity of YBa2Cu3O7-y,” Physical Re-view B, Vol. 50, No. 1, 1994, pp. 594-596. doi:10.1103/PhysRevB.50.594
[4] B. Fisher, J. Genossar, C. G. Kuper, L. Patlagan, G. M. Reisner and A. Knizhnik, “Ef-fects of Substituting Calcium for Yttrium on the Properties of YBa2Cu3O7-δ,” Physical Review B, Vol. 47, No. 10, 1993, pp. 6054-6059. doi:10.1103/PhysRevB.47.6054
[5] R. J. Tellon and L. F. Flower, “Stoichiometric YBa2Cu3O7 is Overdoped,” Physica C, Vol. 204, No. 3-4, 1993, pp. 237-246. doi:10.1016/0921-4534(93)91005-G
[6] G. Xiao, F. H. Streitz, A. Gavrin, Y. W. Du and C. L. Chien, “Effect of Tran-sition-Metal Elements on the Superconductivity of Y-Ba-Cu-O,” Physical Review B, Vol. 35, No. 16, 1987, pp. 8782-8784. doi:10.1103/PhysRevB.35.8782
[7] J. M. Tarascon, P. Bar-boux, P. F. Miceli, L. H. Greene and G. H. Hull, “Structural and Physical Properties of the Metal (M) Substituted YBa2Cu3-xMxO7-y Perovskite,” Phy- sical Review B, Vol. 37, No. 13, 1988, pp. 7458-7469. doi:10.1103/PhysRevB.37.7458
[8] R. L. Neiman, J. Giapintzakis and D. M. Ginsberg, “Transition Temperature and Irreversibility Line of Cobalt-Doped Single-Crystal YBa2Cu3O7-δ: The Effect of High-Pressure Oxygen Annealing,” Physical Review B, Vol. 50, 1994, pp. 16028-16032. doi:10.1103/PhysRevB.50.16028
[9] J. T. Kim, J. Giapint-zakis and D. M. Ginsberg, “Sign Reversal of the Hall Effect in Superconducting YBa2 (Cu1-xNix)3O7-δ Single Crystals,” Physical Review B, Vol. 53, No. 9, 1996, pp. 5922-5826. doi:10.1103/PhysRevB.53.5922
[10] E. R. Ulm and T. R. Lemberger, “Sign Reversal of the Hall Effect in Superconduct-ing YBa2(Cu1-xNix)3O7-δ Single Crystals,” Physical Review B, Vol. 53, No. 9, 1996, pp. 11352-11355. doi:10.1103/PhysRevB.53.11352
[11] B. D. Padalia, S. J. Gurman, P. K. Mehta and O. Prakash, “Extended X-Ray Ab-sorption Fine-Structure Studies of 3d Ions in YBa2(Cu1-xMx)3O7 – delta (x < or = 0.10; M Identical to Mn, Fe, Co, Ni and Zn),” Journal of Physics: Condensed Matter, Vol. 4, No. 33, 1992, p. 6865. doi:10.1088/0953-8984/4/33/001
[12] M. A. Kastner, R. J. Birgeneau, G. Shirane and Y. Endoh, “Magnetic, Transport, and Optical Properties of Mono- layer Copper Oxides,” Re-views of Modern Physics, Vol. 70, No. 3, 1998, pp. 897-928;
[13] T. Timusk and B. Statt, “The Pseudogap in High-Temperature Superconductors: An Experimental Survey,” Re- ports on Progress in Physics, Vol. 62, No.1, 1999, pp. 61- 122.
[14] C. Bernhard and J. L. Tallon, “Thermoelectric Power of Y1-xCaxBa2Cu3O7-δ: Contributions from CuO2 Planes and CuO Chains,” Physical Review B, Vol. 54, No. 13, 1996, pp. 10201-10209. doi:10.1103/PhysRevB.54.10201
[15] J. R. Cooper and J. W. Loram, “Some Correlations between the Thermodynamic and Transport Properties of High Tc Oxides in the Normal State,” Journal de Physique I France, Vol. 6, No. 12, 1996, pp. 2237-2263.
[16] D. Varshney, I. Mansuri and N. Kaurav, “Effect of Electron/Hole Doping on the Transport Properties of Lanthanum Manganites LaMnO3,” Journal of Physics: Condensed Matter, Vol. 19, No. 24, 2007, p. 246211. doi:10.1088/0953-8984/19/24/246211
[17] W. M. Chen, C. C. Lam, J. F. Geng, L. Y. Li, K. C. Hung and X. Jin, “A New Calculating Formula of Iodometric Titration For High Tc Su-perconductors,” Physica C, Vol. 270, No. 1-2, 1996, pp. 155-158. doi:10.1016/0921-4534(96)00497-2
[18] R. V. Krishnan and A. Banerjee, “Harmonic Detection of Multipole Moments and Absolute Calibration in a Simple, Low-Cost Vibrating Sample Magnetometer,” Review of Scientific Instruments, Vol. 70, No. 1, 1999, pp. 85-91. doi:10.1063/1.1149545

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.