Dielectric Properties of Human Normal and Malignant Liver Tissue: A Non-Equilibrium Thermodynamics Approach

DOI: 10.4236/oalib.1101395   PDF   HTML   XML   872 Downloads   1,295 Views   Citations


In this paper we will show the possibility of studying physical properties and irreversible phenomena that occur in biological tissues by applying the dielectric Kluitenberg’s non-equilibrium thermodynamic theory. Namely, we shall use some recent extensions of this theory that allows deducing its main characteristic parameters from experimental measurements. We determine frequency spectrum for phenomenological and state coefficients of the non-equilibrium thermodynamic approach. Applying these results to the study of human liver tumor and normal liver we show, for comparison, that it is possible to determine the difference, in some detail, of the amount of single irreversible phenomena occurring inside them.

Share and Cite:

Farsaci, F. , Russo, A. , Ficarra, S. and Tellone, E. (2015) Dielectric Properties of Human Normal and Malignant Liver Tissue: A Non-Equilibrium Thermodynamics Approach. Open Access Library Journal, 2, 1-12. doi: 10.4236/oalib.1101395.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Jemal, A., Ward, E., Hao, Y. and Thun, M. (2005) Trends in the Leading Causes of Death in the United States, 1970-2002. The Journal of the American Medical Association, 294, 1255-1259.
[2] Bosch, F.X., Ribes, J., Díaz, M. and Cléries, R. (2004) Primary Liver Cancer: Worldwide Incidence and Trends. Gastroenterology, 127, S5-S16.
[3] Forner, A., Hessheimer, A.J., Real, M.I. and Bruix, M.J. (2006) Treatment of Hepatocellular Carcinoma. Critical Reviews in Oncology/Hematology, 60, 89-98.
[4] Kew, M.C., Dos Santos, H.A. and Sherlock, S. (1971) Diagnosis of Primary Cancer of the Liver. British Medical Journal, 4, 408-411.
[5] Zhang, B.H., Yang, B.H. and Tang, Z.Y. (2004) Randomized Controlled Trial of Screening for Hepatocellular Carcinoma. Journal of Cancer Research and Clinical Oncology, 1307, 417-422.
[6] Bruix, J. and Sherman, M. (2005) Management of Hepatocellular Carcinoma. Hepatology, 42, 1208-1236.
[7] Llovet, J.M., Burroughs, A. and Bruix, J. (2003) Hepatocellular Carcinoma. The Lancet, 362, 1907-1917.
[8] Garcea, G., Lloyd, T.D., Aylott, C., Maddern, G. and Berry, D.P. (2003) The Emergent Role of Focal Liver Ablation Techniques in the Treatment of Primary and Secondary Liver Tumours. European Journal of Cancer, 39, 2150-2164.
[9] Wright, A.S., Mahvi, D.M., Haemmerich, D.G. and Lee Jr., F.T. (2003) Minimally invasive approaches in management of hepatic tumors. Surgical Technology International, 11, 144-153.
[10] Wright, A.S., Sampson, L.A., Warner, T.F., Mahvi, D.M. and Lee Jr., F.T. (2005) Radiofrequency versus Microwave Ablation in a Hepatic Porcine Model. Radiology, 236, 132-139.
[11] Stańczyk, M., Zegadło, A., Zwierowicz, T., Zak, D., Bogusławska, R. and Maruszyński, M. (2009) Microwave Ablation of Liver Tumors as a New Instrument for Minimally Invasive Liver Surgery. Polski Merkuriusz Lekarski, 26, 545-549.
[12] Lloyd, D.M., Lau, K.N., Welsh, F., Lee, K.F., Sherlock, D.J., Choti, M.A., Martinie, J.B. and Iannitti, D.A. (2011) International Multicentre Prospective Study on Microwave Ablation of Liver Tumours: Preliminary Results. HPB (Oxford), 13, 579-585.
[13] Stauffer, P.R., Rossetto, F., Prakash, M., Neuman, D.G. and Lee, T. (2003) Phantom and Animal Tissues for Modelling the Electrical Properties of Human Liver. International Journal of Hyperthermia, 19, 89-101.
[14] Wright, A.S., Lee Jr., F.T. and Mahvi, D.M. (2003) Hepatic Microwave Ablation with Multiple Antennae Results in Synergistically Larger Zones of Coagulation Necrosis. Annals of Surgical Oncology, 10, 275-283.
[15] Shock, S.A., Meredith, K., Warner, T.F., Sampson, L.A., Wright, A.S., Winter 3rd, T.C., Mahvi, D.M., Fine, J.P. and Lee Jr., F.T. (2004) Microwave Ablation with Loop Antenna: In Vivo Porcine Liver Model. Radiology, 231, 143-149.
[16] Hines-Peralta, A.U., Pirani, N., Clegg, P., Cronin, N., Ryan, T.P., Liu, Z. and Goldberg, S.N. (2006) Microwave Ablation: Results with a 2.45-GHz Applicator in ex Vivo Bovine and in Vivo Porcine Liver. Radiology, 230, 94-102.
[17] Jiao, D.C., Zhou, Q., Han, X.W., Wang, Y.F., Wu, G., Ren, J.Z., Wang, Y.L., Ding, P.X., Ma, J. and Fu, M.T. (2012) Microwave Ablation Treatment of Liver Cancer with a 2,450-MHz Cooled-Shaft Antenna: Pilot Study on Safety and Efficacy. Asian Pacific Journal of Cancer Prevention, 13, 737-742.
[18] De Groot, S.R. and Mazur, P. (1984) Non-Equilibrium Thermodynamics. Dover Publication, New York.
[19] McCrum, N.G., Read, B.E. and Williams, G. (1967) Anelastic and Dielectric Effects in Polymeric Solids. John Wiley and Sons Ltd., London.
[20] Farsaci, F., Tellone, E., Cavallaro, M., Russo, A. and Ficarra, S. (2013) Low Frequency Dielectric Characteristics of Human Blood: A Non Equilibrium Thermodynamic Approach. Journal of Molecular Liquids, 188, 113-119.
[21] Ciancio, V., Farsaci, F. and Di Marco, G. (2007) A Method for Experimental Evaluation of Phenomenological Coefficients in Media with Dielectric Relaxation. Physica B, 387, 130-135. http://dx.doi.org/10.1016/j.physb.2006.03.095
[22] Ciancio, V., Farsaci, F. and Rogolino, P. (2009) Phenomenological Approach on Wave Propagation in Dielectric Media with Two Relaxation Times. Physica B, 404, 320-324.
[23] Ciancio, V., Farsaci, F. and Rogolino, P. (2009) On the Extension of Debye’s Model for Media with Dielectric Relaxation. International Journal of Engineering Mathematics, 1, 57-63.
[24] Farsaci, F. and Rogolino, P. (2012) An Alternative Dielectric Model for Low and High Frequencies: A Nonequilibrium Thermodynamic Approach. Journal of Non-Equilibrium Thermodynamics, 37, 27-41.
[25] Ciancio, V., Farsaci, F. and Rogolino, P. (2010) On a Thermodynamical Model for Dielectric Relaxation Phenomena. Physica B, 405, 175-179.
[26] Kluitenberg, G.A. (1973) On Dielectric and Magnetic Relaxation Phenomena and Non-Equilibrium Thermodynamics. Physica, 68, 75-82.
[27] Kluitenberg, G.A. (1977) On Dielectric and Magnetic Relaxation Phenomena and Vectorial Internal Degrees. Physica A, 87, 302-330.
[28] Kluitenberg, G.A. (1981) On Vectorial Internal Variables and Dielectric and Magnetic Relaxation Phenomena. Physica A, 109, 91-122.
[29] Ciancio, V., Farsaci, F. and Rogolino, P. (2009) Mathematical Approach to the Relaxation Phenomena. Applied Sciences, 11, 48-59.
[30] O’Rourke, A.P., Lazebnik, M., Bertram, J.M., Converse, M.C., Hagness, S.C., Webster, J.G. and Mahvi, D.M. (2007) Dielectric Properties of Human Normal, Malignant and Cirrhotic Liver Tissue: In Vivo and ex Vivo Measurements from 0.5 to 20 GHz Using a Precision Open-Ended Coaxial Probe. Physics in Medicine and Biology, 52, 4707-4719.
[31] Baker, P.M., Clement, P.B. and Young, R.H. (2005) Malignant Peritoneal Mesothelioma in Women. A Study of 75 Cases with Emphasis on Their Morphologic Spectrum and Differential Diagnosis. American Journal of Clinical Pathology, 123, 724-737.
[32] Bai, X. and Wu, C.L. (2012) Renal Cell Carcinoma and Mimics: Pathologic Primer for Radiologists. AJR, 198, 1289-1293.
[33] Ciancio, V., Bartolotta, A. and Farsaci, F. (2007) Experimental Confirmations on a Thermodynamical Theory for Viscoanelastic Media with Memory. Physica B—Condensed Matter, 394, 8-13.
[34] Farsaci, F., Ciancio, V. and Rogolino, P. (2010) Mechanical Model for Relaxation Phenomena in Viscoanelastic Media of Order One. Physica B—Condensed Matter, 405, 3208-3212.
[35] Ciancio, A., Ciancio, V. and Farsaci, F. (2007) Wave Propagation in Media Obeying a Thermoviscoanelastic Model. Scientific Bulletin—University Politehnica of Bucharest, Series A: Applied Mathematics and Physics, 69, 69-79.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.