Share This Article:

Astrophysical Radiative Neutron Capture on 10B Taking into Account Resonance at 475 keV

Abstract Full-Text HTML XML Download Download as PDF (Size:2757KB) PP. 1-13
DOI: 10.4236/oalib.1101263    407 Downloads   644 Views  

ABSTRACT

The possibility of the description of the available experimental data for cross sections of the neutron capture reaction on 10B at thermal and astrophysical energies, taking into account the resonance at 475 keV, was considered within the framework of the modified potential cluster model with forbidden states and accounting for the resonance behavior of the scattering phase shifts.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Dubovichenko, S. and Dzhazairov-Kakhramanov, A. (2015) Astrophysical Radiative Neutron Capture on 10B Taking into Account Resonance at 475 keV. Open Access Library Journal, 2, 1-13. doi: 10.4236/oalib.1101263.

References

[1] Wildermuth, K. and Tang, Y.C. (1977) A Unified Theory of the Nucleus. Vieweg, Branschweig.
[2] Mertelmeir, T. and Hofmann, H.M. (1986) Consistent Cluster Model Description of the Electromagnetic Properties of Lithium and Beryllium Nuclei. Nuclear Physics A, 459, 387.
http://dx.doi.org/10.1016/0375-9474(86)90141-7
[3] Dohet-Eraly, J. (2013) Microscopic Cluster Model of Elastic Scattering and Bremsstrahlung of Light Nuclei. Université Libre De Bruxelles, Bruxelles.
http://theses.ulb.ac.be/ETD-db/collection/available/ULBetd-09122013-100019/unrestricted/these_Jeremy_Dohet-Eraly.pdf
[4] Dohet-Eraly, J. and Baye, D. (2011) Microscopic Cluster Model of α + n, α + p, α + 3He, and α + α Elastic Scattering from a Realistic Effective Nuclear Interaction. Physical Review C, 84, Article ID: 014604.
http://dx.doi.org/10.1103/PhysRevC.84.014604
[5] Descouvemont, P. and Dufour, M. (2012) Microscopic Cluster Model. In: Beck, C., Ed., Clusters in Nuclei, 2nd Edition, Springer-Verlag, Berlin.
[6] Descouvemont, P. Microscopic Cluster Models I.
http://www.nucleartheory.net/Talent_6_Course/TALENT_lectures/pd_microscopic_1.pdf
[7] Nesterov, A.V., et al. (2010) Three Cluster Description of the Characteristics of Light Nuclei. Physics of Particles and Nuclei, 41, 716.
http://dx.doi.org/10.1134/S1063779610050047
[8] Nemets, O.F., Neudatchin, V.G., Rudchik, A.T., Smirnov, Yu.F. and Tchuvil’sky, Yu.M. (1988) Nucleon Association in Atomic Nuclei and the Nuclear Reactions of the Many Nucleon Transfers. Naukova Dumka, Kiev.
[9] Dubovichenko, S.B. (2012) Thermonuclear Processes of the Universe. Nova Science Publishers, Hauppauge.
https://www.novapublishers.com/catalog/product_info.php?products_id=31125
[10] Dubovichenko, S.B. (2014) Primordial Nucleosynthesis of the Universe. 3rd Edition, Revised and Enlarged, Lambert Academic Publishing, GmbH & Co. KG, Germany.
https://www.ljubljuknigi.ru/store/ru/book/Первичный-нуклеосинтез-вселенной/isbn/978-3-659-54311-1
[11] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (1994) Calculation of Coulomb Form Factors of Lithium Nuclei in a Cluster Model Based on Potentials with Forbidden States. Physics of Atomic Nuclei, 57, 733-740.
[12] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (1997) Electromagnetic Effects in Light Nuclei and the Cluster Potential Model. Physics of Particles and Nuclei, 28, 615-641.
http://dx.doi.org/10.1134/1.953057
[13] Dubovichenko, S.B., Neudachin, V.G., Sakharuk, A.A. and Smirnov, Yu.F. (1990) Generalized Potential Description of Interaction Light Nuclei p3H and p3He. Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya, 54, 911-916.
[14] Neudachin, V.G., Sakharuk, A.A. and Dubovichenko, S.B. (1995) Photodisintegration of 4He and the Supermultiplet Potential Model of Cluster-Cluster Interaction. Few-Body Systems, 18, 159-172.
http://dx.doi.org/10.1007/s006010050009
[15] Dubovichenko, S.B. (2013) Light Nuclei and Nuclear Astrophysics. 2nd Edition, Revised and Expanded, Lambert Academic Publishing, Germany.
[16] Dubovichenko, S.B. (2012) Calculation Methods of Nuclear Characteristics. 2nd Edition, Revised and Expanded, Lambert Academic Publishing, Germany.
[17] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (1990) Potential Description of the Elastic N2H, 2H2H, N4He, 2H3He Scattering. Soviet Journal of Nuclear Physics, 51, 971.
[18] Dubovichenko, S.B. (1995) Analysis of Photonuclear Processes in the N2H and 2H3He Systems on the Basis of Cluster Models for Potentials with Forbidden States. Physics of Atomic Nuclei, 58, 1174-1180.
[19] Dubovichenko, S.B. and Zhusupov, M.A. (1984) Structure of Light Nuclei with A = 6, 7, 8 in Cluster Models for Potentials with Forbidden States. Izvestiya Akademii Nauk SSR, Seriya Fizicheskaya, 48, 935-937.
[20] Dubovichenko, S.B. and Zhusupov, M.A. (1984) Some Characteristics of 7Li Nucleus in 4He3H Model for Potentials with Forbidden States. Soviet Journal of Nuclear Physics, 39, 870.
[21] Dubovichenko, S.B. (1998) Tensor 2H4He Interactions in the Potential Cluster Model Involving Forbidden States. Physics of Atomic Nuclei, 61, 162-168.
[22] Kukulin, V.I., Pomerantsev, V.N., Cooper, S.G. and Dubovichenko, S.B. (1998) Improved 2H4He Potentials by Inversion: The Tensor Force and Validity of the Double Folding Model. Physical Review C, 57, 2462-2473.
http://dx.doi.org/10.1103/PhysRevC.57.2462
[23] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2009) Astrophysical S-Factor of p2H Radiative Capture. European Physical Journal A, 39, 139-143.
http://dx.doi.org/10.1140/epja/i2008-10729-8
[24] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2012) Radiative n7Li Capture at Astrophysical Energies. Annalen der Physik, 524, 850-861.
[25] Dubovichenko, S.B. and Burkova, N.A. (2014) Radiative n11B Capture at Astrophysical Energies. Modern Physics Letters A, 29, Article ID: 1450036.
[26] Dubovichenko, S.B., Burtebaev, N., Dzhazairov-Kakhramanov, A.V. and Alimov, D. (2014) Radiative p14C Capture at Astrophysical Energies. Modern Physics Letters A, 29, Article ID: 1450125.
[27] Dubovichenko, S.B. (2010) Astrophysical S-Factors of Radiative 3He4He, 3H4He, and 2H4He Capture. Physics of Atomic Nuclei, 73, 1526-1538.
http://dx.doi.org/10.1134/S1063778810090073
[28] Dubovichenko, S.B. (2011) Astrophysical S-Factors for Radiative Proton Capture by 3H and 7Li Nuclei. Physics of Atomic Nuclei, 74, 358-370.
http://dx.doi.org/10.1134/S1063778811030094
[29] Dubovichenko, S.B. (2012) Astrophysical S-Factor for the Radiative-Capture Reaction p13C→14Nγ. Physics of Atomic Nuclei, 75, 173-181.
http://dx.doi.org/10.1134/S1063778812020044
[30] Dubovichenko, S.B. (2013) Radiative Neutron Capture by 2H, 7Li, 14C, and 14N Nuclei at Astrophysical Energies. Physics of Atomic Nuclei, 76, 841-861.
http://dx.doi.org/10.1134/S106377881307003X
[31] Dubovichenko, S.B. (2013) The Neutron Capture to the Excited States of 9Be Taking to Account the Resonance at 622 keV. Journal of Experimental and Theoretical Physics, 117, 649-655.
[32] Dubovichenko, S.B. (2012) Radiative n2Н Capture at Low Energies. Russian Physics Journal, 55, 138-145.
[33] Dubovichenko, S.B. (2011) М1 Process and Astrophysical S-Factor of the Reaction p2H Capture. Russian Physics Journal, 54, 157-164.
[34] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2009) Astrophysical S-Factor for р12С → 13Nγ Radiative Capture. Russian Physics Journal, 52, 833-840.
[35] Dubovichenko, S.B. and Uzikov, Yu.N. (2011) Astrophysical S-Factors of Reactions with Light Nuclei. Physics of Particles and Nuclei, 42, 251-301.
http://dx.doi.org/10.1134/S1063779611020031
[36] Dubovichenko, S.B. (2013) Neutron Capture by Light Nuclei at Astrophysical Energies. Physics of Particles and Nuclei, 44, 803-847.
http://dx.doi.org/10.1134/S1063779613050031
[37] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2012) Examination of the Astrophysical S-Factors of the Radiative Proton Capture on 2H, 6Li, 7Li, 12C and 13C. International Journal of Modern Physics E, 21, Article ID: 1250039.
http://dx.doi.org/10.1142/S0218301312500395
[38] Dubovichenko, S.B., Dzhazairov-Kakhramanov, A.V. and Afanasyeva, N.V. (2013) Radiative Neutron Capture on 9Be, 14C, 14N, 15N and 16O at Thermal and Astrophysical Energies. International Journal of Modern Physics E, 22, Article ID: 1350075.
http://dx.doi.org/10.1142/S0218301313500754
[39] Dubovichenko, S.B., Dzhazairov-Kakhramanov, A.V. and Burkova, N.A. (2013) The Radiative Neutron Capture on 2H, 6Li, 7Li, 12C and 13C at Astrophysical Energies. International Journal of Modern Physics E, 22, Article ID: 1350028.
http://dx.doi.org/10.1142/S0218301313500286
[40] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2013) The Thermal and Astrophysical Neutron Capture on Light Nuclei in Potential Cluster Model with Forbidden States. In: Strakovsky, I. and Blokhintsev, L., Eds., The Universe Evolution: Astrophysical and Nuclear Aspects, Nova Science Publishers, New York, 49-108.
[41] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2012) Astrophysical S-Factors of Proton Radiative Capture in Thermonuclear Reactions in the Stars and the Universe. In: O’Connel, J.R. and Hale, A.L., Eds., The Big Bang: Theory, Assumptions and Problems, Nova Science Publishers, New York, 1-60.
[42] Heil, M., Käppeler, F., Wiescher, M. and Mengoni, A. (1998) The (n, γ) Cross Section of 7Li. Astrophysical Journal, 507, 997.
http://dx.doi.org/10.1086/306367
[43] Guimaraes, V. and Bertulani, C.A. (2010) Light Radioactive Nuclei Capture Reactions with Phenomenological Potential Model. AIP Conference Proceedings, 1245, 30-38.
[44] Igashira, M. and Ohsaki, T. (2004) Neutron Capture Nucleosynthesis in the Universe. Science and Technology of Advanced Materials, 5, 567.
http://iopscience.iop.org/1468-6996/5/5-6/A06
[45] Nagai, Y., Shima, T., Suzuki, T.S., Sato, H., Kikuchi, T., Kii, T., Igashira, M. and Ohsaki, T. (1996) Fast Neutron Capture Reactions in Nuclear Astrophysics. Hyperfine Interactions, 103, 43-48.
http://dx.doi.org/10.1007/BF02317341
[46] Liu, Z.H., Lin, C.J., Zhang, H.Q., Li, Z.C., Zhang, J.S., Wu, Y.W., Yang, F., Ruan, M., Liu, J.C., Li, S.Y. and Peng, Z.H. (2001) Asymptotic Normalization Coefficients and Neutron Halo of the Excited States in 12B and 13C. Physical Review C, 64, Article ID: 034312.
http://dx.doi.org/10.1103/PhysRevC.64.034312
[47] Esmakhanova, K., Myrzakulov, N., Nugmanova, G., Myrzakulov, Ye., Chechin, L.M. and Myrzakulov, R. (2011) Dark Energy in Some Integrable and Nonintegrable FRW Cosmological Models. International Journal of Modern Physics D, 20, 2419.
http://dx.doi.org/10.1142/S0218271811020445
[48] Chechin, L.M. (2006) Antigravitational Instability of Cosmic Substrate in the Newtonian Cosmology. Chinese Physics Letters, 23, 2344-2347.
http://dx.doi.org/10.1088/0256-307X/23/8/104
[49] Chechin, L.M. (2010) The Cosmic Vacuum and the Rotation of Galaxies. Astronomy Reports, 54, 719-723.
http://dx.doi.org/10.1134/S1063772910080044
[50] White, M., Scott, D. and Silk, J. (1994) Anisotropies in the Cosmic Microwave Background. Annual Review of Astronomy and Astrophysics, 32, 319-370.
http://dx.doi.org/10.1146/annurev.aa.32.090194.001535
[51] Chechin, L.M. and Myrzakul, Sh.R. (2009) The Development of Perturbations in the Universe Described by the Nonstationary Equation of State. Russian Physics Journal, 52, 286-293.
http://dx.doi.org/10.1007/s11182-009-9220-9
[52] Omarov, T. and Chechin, L.M. (1999) On the Dynamics of Two Oscillating Cosmic Strings. General Relativity and Gravitation, 31, 443-459.
http://dx.doi.org/10.1023/A:1026685904534
[53] Clayton, D. (2003) Isotopes in the Cosmos. Hydrogen to Gallium. Cambridge University Press, Cambridge.
[54] Itzykson, C. and Nauenberg, M. (1966) Unitary Groups: Representations and Decompositions. Reviews of Modern Physics, 38, 95.
http://dx.doi.org/10.1103/RevModPhys.38.95
[55] Neudatchin, V.G. and Smirnov, Yu.F. (1969) Nucleon Associations in Light Nuclei. Nauka, Moscow.
[56] Tilley, D.R., Kelley, J.H., Godwin, J.L., Millener, D.J., Purcell, J.E., Sheu, C.G. and Weller, H.R. (2004) Energy Levels of Light Nuclei A = 8, 9, 10. Nuclear Physics A, 745, 155-362.
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.059
[57] Ajzenberg-Selove, F. (1990) Energy Level of Light Nuclei A= 11-12. Nuclear Physics A, 506, 1-158.
http://dx.doi.org/10.1016/0375-9474(90)90271-M
[58] Lamaze, G.P., Schrack, R.A. and Wasson, O.A. (1978) A New Measurement of the 6Li(n,α)T Cross Section. Nuclear Science and Engineering, 68, 183.
[59] Kelley, J.H., Kwan, E., Purcell, J.E., Sheu, C.G. and Weller, H.R. (2012) Energy Levels of Light Nuclei A = 11. Nuclear Physics A, 880, 88-195.
http://dx.doi.org/10.1016/j.nuclphysa.2012.01.010
[60] Igashira, M., et al. (1994) Measurements of keV-Neutrons Capture Gamma Rays. Proceedings of the Conference “Measurement, Calculation and Evaluation of Photon Production Data”, Bologna, 14-17 November 1994, 269.
[61] Angulo, С., Arnould, M., Rayet, M., Descouvemont, P., Baye, D., Leclercq-Willain, C., et al. (1999) A Compilation of Charged-Particle Induced Thermonuclear Reaction Rates. Nuclear Physics A, 656, 3-183.
[62] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (1995) Photoprocesses on 7Li and 7Be Nuclei in the Cluster Model for Potentials with Forbidden States. Physics of Atomic Nuclei, 58, 579.
[63] Ajzenberg, I. and Grajner, V. (1973) Mechanisms of Nuclear Excitation. Atomizdat, Moscow.
[64] Varshalovich, D.A., Moskalev, A.N. and Khersonskii, V.K. (1989) Quantum Theory of Angular Momentum. World Scientific, Singapore City.
[65] http://physics.nist.gov/cgi-bin/cuu/Value?mud|search_for=atomnuc
[66] Avotina, M.P. and Zolotavin, A.V. (1979) Moments of the Ground and excited States of Nuclei. Atomizdat, Moscow.
[67] http://cdfe.sinp.msu.ru/cgi-bin/gsearch_ru.cgi?z=5&a=10
[68] Dolinskii, Е.I., Mukhamedzhanov, A.M. and Yarmukhamedov, R. (1978) Direct Nuclear Reactions on Light Nuclei with the Emission of Neutrons. FAN, Tashkent.
[69] Blokhintsev, L.D., Borbei, I. and Dolinskii, E.I. (1977) Ядерные вершинные константы. Fizika Elementarnykh Chastits i Atomnoya Yadra, 8, 1189.
[70] Yarmukhamedov, R. (2013) Determination of ANC for n10B Channel in 11B Nucleus. Private Communication.
[71] Bartholomew, G.A. and Campion, P.J. (1957) Neutron Capture Gamma Rays from Lithium, Boron and Nitrogen. Canadian Journal of Physics, 35, 1347-1360.
http://dx.doi.org/10.1139/p57-147
[72] Mughabghab, S.F. (2006) Atlas of Neutron Resonances: Resonance Parameters and Thermal Cross Sections, Z = 1-100. 5th Edition, Elsevier, Amsterdam.
[73] Firestone, R.B., Krticka, M., McNabb, D.P., Sleaford, B., Agvaanluvsan, U., Belgya, T. and Revay, Zs. (2008) New Methods for the Determination of Total Radiative Thermal Neutron Capture Cross Sections. AIP Conference Pro-ceedings, 1005, 26.
http://dx.doi.org/10.1063/1.2920738
[74] Dubovichenko, S.B. (2013) Radiative n15N Capture at Low Energies. Russian Physics Journal, 56, 494-503.
http://dx.doi.org/10.1007/s11182-013-0061-1
[75] Dubovichenko, S.B. (2014) Astrophysical n13C Capture. Russian Physics Journal, 57, 16-23.
http://dx.doi.org/10.1007/s11182-014-0201-2
[76] Dubovichenko, S.B. (2014) Radiative N16O Capture at Low Energies. Russian Physics Journal, 57, 498-508.
http://dx.doi.org/10.1007/s11182-014-0267-x
[77] Dubovichenko, S.B., Burtebaev, N., Dzhazairov-Kakhramanov, A.V. and Alimov, D.K. (2014) Astrophysical S-Factor of the Radiative Proton Capture on 14C at Low Energies. Russian Physics Journal, 57, in Print.
[78] Dubovichenko, S.B., Adilbekov, D.N. and Tkachenko, A.C. (2014) Proton Radiative Capture on 10B. Bulletin of Kazakh Academy of Sciences: Series Physics and Mathematics, 4, 3-20.
[79] Dubovichenko, S.B. and Dzhazairov-Kakhramanov, A.V. (2014) Neutron Radiative Capture on 10B, 11B and Proton Radiative Capture on 11B, 14C and 15N at Thermal and Astrophysical Energies. International Journal of Modern Physics E, 23, Article ID: 1430012.
[80] Dubovichenko, S.B., Afanasyeva, N.V. and Burkova, N.A. (2014) Radiative Neutron Capture on 15N. Physical Science International Journal, 4, 636-648.
http://dx.doi.org/10.9734/PSIJ/2014/6753
[81] Dubovichenko, S.B. (2011) A Three-Body Model of 11B Nucleus. Journal of Experimental and Theoretical Physics, 113, 221-226.
http://dx.doi.org/10.1134/S106377611106015X

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.