Growth and Toxin Production by Microcystis Aeruginosa PCC 7806 (Kutzing) Lemmerman at Elevated Salt Concentrations
Ken Black, Mete Yilmaz, Edward J. Phlips
DOI: 10.4236/jep.2011.26077   PDF   HTML     7,786 Downloads   14,555 Views   Citations


One of the most common and widespread bloom-forming cyanobacteria associated with toxin production is Microcystis aeruginosa (Kutzing) Lemmerman. While normally associated with fresh water environments, this toxigenic species has been observed at bloom concentrations in a number of major estuaries worldwide. This study examined the effect of salinity on growth and toxin production by M. aeruginosa strain PCC 7806 under controlled laboratory conditions. Salt concentrations above 12.6 ppt resulted in total cessation of growth. Toxin production was similarly affected, with cultures grown in salt concentrations of 4.6 ppt and above yielding less toxin than the control after 20 days of culture. Toxin concentrations after 20 days of culture were 40% of the control at 4.6 ppt. The relative proportion of extracellular to intracellular toxin increased over time in cultures with salt concentrations greater than 4.6 ppt. Extracellular toxins persisted in the media long after the cessation of growth. The results suggest that the influence of M. aeruginosa and/or its toxins can extend well out into estuarine environments under the influence of significant freshwater inputs.

Share and Cite:

K. Black, M. Yilmaz and E. Phlips, "Growth and Toxin Production by Microcystis Aeruginosa PCC 7806 (Kutzing) Lemmerman at Elevated Salt Concentrations," Journal of Environmental Protection, Vol. 2 No. 6, 2011, pp. 669-674. doi: 10.4236/jep.2011.26077.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] W. W. Carmichael. “Toxic Microcystis and the Environment,” In: M. F. Watanabe, K. Harada, W. W. Carmichael and H. Fujiki, Eds., Toxic Microcystis, CRC Press, Boca Raton, 1996.
[2] H. W. Paerl, R. S. Fulton, P. H. Moisander and J. Dyble, “Harmful Freshwater Algal Blooms, with an Emphasis on Cyanobacteria,” The Scientific World Journal, Vol. 1, 2001, pp. 76-113.
[3] R. W. Zurawell, H. Chen, J. M. Burke and E. E. Prepas, “Hepatotoxic Cyanobacteria: A Review of the Biological Importance of Microcystins in Freshwater Environments,” Journal of Toxicology and Environmental Health, Part B, Vol. 8, No. 1, 2005, pp. 1-37.
[4] I. Chorus and J. Bartram, “Toxic Cyanobacteria in Water: A Guide to Their Public Health Consequences, Monitoring, and Management,” E & FN Spoon, London, 1999. doi:10.4324/9780203478073
[5] K. Kaya. “Toxicology of Microcystins,” In: M.F. Watanabe, K. Harada, W. W. Carmichael and H. Fujiki, Eds., Toxic Microcystis, CRC Press, Boca Raton, 1996.
[6] C. Wiegand and S. Pflugmacher, “Ecotoxicological Effects of Selected Cyanobacterial Secondary Metabolites: A Short Review,” Toxicology and Applied Pharmacology, Vol. 203, No. 3, 2005, pp. 201-218. doi:10.1016/j.taap.2004.11.002
[7] W. W. Carmichael, S. M. Azevedo, J. S. An, R. J. Molica, E. M. Jochimsen, S. Lau, K. L. Rinehart, G. R. Shaw and G. K. Eaglesham, “Human Fatalities from Cyanobacteria: Chemical and Biological Evidence for Cyanotoxins,” Environmental Health Perspectives, Vol. 109, No. 7, 2001, pp. 663-668. doi:10.1289/ehp.01109663
[8] J. H. Landsberg, “The Effects of Harmful Algal Blooms on Aquatic Organisms,” Reviews in Fisheries Science, Vol. 10, No. 2, 2002, pp. 113-390. doi:10.1080/20026491051695
[9] I. Chorus, “Cyanobacterial Toxin Research and Its Application in Germany: A Review of the Current Status,” Environmental Toxicology, Vol. 17, No. 4, 2002, pp. 358- 360. doi:10.1002/tox.10072
[10] S. H. White, L. J. Duivenvoorden and L. D. Fabbro, “A Decision-Making Framework for Ecological Impacts Associated with the Accumulation of Cyanotoxins (Cylindrospermopsin and Microcystin),” Lake and Reservoir Management, Vol. 10, No. 1, 2005, pp. 25-37. doi:10.1111/j.1440-1770.2005.00258.x
[11] B. W. Ibelings and K. E. Havens, “Cyanobacterial Toxins: A Qualitative Meta-Analysis of Concentrations, Dosage, and Effects in Freshwater and Marine Biota,” Advances in Experimental Medicine and Biology, Vol. 619, 2008, pp. 675-732. doi:10.1007/978-0-387-75865-7_32
[12] E. M. Jochimsen, W. W. Carmichael, J. S. An, D. M. Cardo, S. T. Cookson, C. E. Holmes, M. B. Antunes, D. A. de Melo Filho, T. M. Lyra, V. S. Barreto, S. M. Azevedo and W. R. Jarvis, “Liver Failure and Death after Exposure to Microcystins at a Hemodialysis Center in Brazil,” The New England Journal of Medicine, Vol. 338, No. 13, 1998, pp. 873-878. doi:10.1056/NEJM199803263381304
[13] P. J. Oberholster, A. Botha and J. U. Grobbelaar, “Microcystis Aeruginosa: Source of Toxic Microcystins in Drinking Water,” African Journal of Biotechnology, Vol. 3, No. 3, 2004, pp. 159-168.
[14] C. Svrcek and D. W. Smith, “Cyanobacteria Toxins and the Current State of Knowledge on Water Treatment Options: A Review,” Journal of Environmental Engineering and Science Vol. 3, No. 3, 2004, pp. 155-185. doi:10.1139/s04-010
[15] P. W. Lehman, G. Boyer, C. Hall, S. Waller and K. Gerhts, “Distribution and Toxicity of a New Colonial Microcystis Aeruginosa Bloom in the San Francisco Bay Estuary, California,” Hydrobiologia, Vol. 541, No. 1, 2005, pp. 87-99. doi:10.1007/s10750-004-4670-0
[16] V. N. Nikulina, “Seasonal Dynamics of Phytoplankton in the Inner Neva Estuary in the 1980’s and 1990’s,” Oceanologia, Vol. 45, 1, 2003, pp. 25-39.
[17] C. Rocha, H. Galvao and A. Barbosa, “Role of Transient Silicon Limitation in the Development of Cyanobacteria Blooms in the Guadiana Estuary, South-Western Iberia,” Marine Ecology Progress Series, Vol. 228, 2002, pp. 35- 45. doi:10.3354/meps228035
[18] R. Atkins, T. Rose, R. S. Brown and M. Robb, “The Microcystis Cyanobacteria Bloom in the Swan River— February 2000,” Water Science and Technology, Vol. 43, No. 3, 2001, pp. 107-114.
[19] E. J. Phlips, S. Badylak, J. Hart, D. Haunert, J. Lockwood, K. O’Donnell, D. Sun, P. Viveros and M. Yilmaz, “Climatic Influences on Autochthonous and Allochthonous Phytoplankton Blooms in a Subtropical Estuary, St. Lucie Estuary, Florida, USA,” Estuaries and Coasts, 2011, in Press.
[20] E. J. Phlips, J. Hendrickson, E. L. Quinlan and M. Cichra, “Meteorological Influences on Algal Bloom Potential in a Nutrient-Rich Blackwater River,” Freshwater Biology, Vol. 52, No. 11, 2007, pp. 2141-2155. doi:10.1111/j.1365-2427.2007.01844.x
[21] S. Otsuka, S. Suda, R. Li, M. Watanabe, H. Oyaizu, S. Matsumoto and M. Watanabe, “Characterization of Morphospecies and Strains of the Genus Microcystis (Cyanobacteria) for a Reconsideration of Species Classification,” Phycological Research, Vol. 47, 1999, pp. 189-197. doi:10.1111/j.1440-1835.1999.tb00298.x
[22] K. G. Sellner, R. V. Lacouture and C. R. Parrish, “Effects of Increasing Salinity on a Cyanobacterial Bloom in the Potomac River Estuary,” Journal of Plankton Research, Vol. 10, No. 1, 1988, pp. 49-61. doi:10.1093/plankt/10.1.49
[23] L. Tonk, K. Bosch, P. M. Visser and J. Huisman, “Salt Tolerance of the Harmful Cyanobacterium Microcystis Aeruginosa,” Aquatic Microbial Ecology, Vol. 46, No. 2, 2007, pp. 117-123. doi:10.3354/ame046117
[24] P. T. Orr, G. J. Jones and G. B. Douglas, “Response of Cultured Microcystis Aeruginosa from the Swan River, Australia, to Elevated Salt Concentration and Consequences for Bloom and Toxin Management in Estuaries,” Marine and Freshwater Research, Vol. 55, No. 3, 2004, pp. 277-283. doi:10.1071/MF03164
[25] J. A. Baker, B. A. Neilan, B. Entsch and D. B. McKay, “Identification of Cyanobacteria and Their Toxigenicity in Environmental Samples by Rapid Molecular Analysis,” Environmental Toxicology, Vol. 16, No. 6, 2001, pp. 472-482. doi:10.1002/tox.10010
[26] D. Schatz, Y. Keren, O. Hadas, S. Carmeli, A. Sukenik and A. Kaplan, “Ecological Implications of the Emergence of Non-Toxic Subcultures from Toxic Microcystis Strains,” Environmental Microbiology, Vol. 7, No. 6, 2005, pp. 798-805. doi:10.1111/j.1462-2920.2005.00752.x
[27] K. R. James, B. Cant and T. Ryan, “Responses of Freshwater Biota to Rising Salinity Levels and Implications for Saline Water Management: A Review,” Australian Journal of Botany, Vol. 51, 2003, pp. 703-713. doi:10.1071/BT02110
[28] P. T. Orr and G. J. Jones, “Relationship between Microcystin Production and Cell Division Rates in Nitrogen- Limited Microcystis Aeruginosa Cultures,” Limnology and Oceanography, Vol. 43, No. 7, 1998, pp. 1604-1614. doi:10.4319/lo.1998.43.7.1604
[29] J. M. Verspagen, J. Passarge, K. D. Johnk, P. M. Visser, L. Peperzak, P. Boers, H. J. Laanbroek and J. Huisman, “Water Management Strategies against Toxic Microcystis Blooms in the Dutch Delta,” Ecological Applications, Vol. 16, 2006, pp. 313-327. doi:10.1890/04-1953
[30] D. R. Hoagland and D. L. Arnon, “The Water Culture Method for Growing Plants without Soil,” California Agricultural Experiment Station Circular, Vol. 347, 1950, pp. 1-32.
[31] R. E. Slovacek and P. J. Hannan, “In Vivo Fluorescence Determinations of Phytoplankton Chlorophyll A,” Limnology and Oceanography, Vol. 22, 5, 1977, pp. 919-925. doi:10.4319/lo.1977.22.5.0919
[32] American Public Health Association (APHA), “Standard Methods for the Examination of Water and Wastewater,” American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 19th Ed., Washington D.C., 1995.
[33] R. J. Porra, W. A. Thompson and P. E. Kriedemann, “Determination of Accurate Extinction Coefficients and Simultaneous-Equations for Assaying Chlorophyll-a and Chlorophyll-b Extracted with 4 Different Solvents— verification of the Concentration of Chlorophyll Standards by Atomic-Absorption Spectroscopy,” Biochimica et Biophysica Acta, Vol. 975, No. 3, 1989, pp. 384-394. doi:10.1016/S0005-2728(89)80347-0
[34] H. Utermohl, “Zur vervollkommnung der quatitativen phytoplankton-methodik,” Mitteilungen-Internationale Ve- reinigung fur Theoretische und Angewandte Limnologie, Vol. 9, 1958, pp. 1-38.
[35] J. S. Metcalf and G. A. Codd, “Microwave Oven and Boiling Waterbath Extraction of Hepatotoxins from Cyanobacterial Cells,” FEMS Microbiology Letters, Vol. 184, No. 2, 2000, pp. 241-246. doi:10.1111/j.1574-6968.2000.tb09021.x
[36] V. F. de Magalh?es, R. M. Soares and S. M. F. O. Azevedo, “Microcystin Contamination in Fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): Ecological Implication and Human Health Risk,” Toxicon, Vol. 39, No. 7, 2001, pp. 1077-1085. doi:10.1016/S0041-0101(00)00251-8
[37] M. F. Watanabe, K. Tsuji, Y. Watanabe, K. Harada and M. Suzuki, “Release of Heptapeptide Toxin (Microcystin) during the Decomposition Process of Microcystis Aeruginosa,” Natural Toxins, Vol. 1, 1992, pp. 48-53. doi:10.1002/nt.2620010110
[38] I. R. Falconer, A. Choice and W. Hosja, “Toxicity of the Edible Mussel (Mytilus edulis) Growing Naturally in an Estuary during a Water-Bloom of Blue-Green Alga Nodularia Spumigena,” Journal of Environmental Toxicology and Water Quality, Vol. 7, No. 2, 1992, pp. 119-123. doi:10.1002/tox.2530070203
[39] E. E. Prepas, B. G. Kotak, L. M. Campbell, J. C. Evans, S. E. Hrudey and C. F. B. Holmes, “Accumulation and Elimation of Cyanobacterial Hepatotoxins by the Freshwater Clam Anodonta Grandis Simpsoniana,” Canadian Journal of Fisheries and Aquatic Sciences, Vol. 54, 1997, pp. 41-46.
[40] M. F. Watanabe, H. D. Park, F. Kondo, K. Harada, H. Hayashi and T. Okino, “Identification and Estimation of Microcystins in Freshwater Mussels,” Natural Toxins, Vol. 5, 1997, pp. 31-35. doi:10.1002/(SICI)(1997)5:1<31::AID-NT5>3.0.CO;2-X
[41] C. Carbis, G. Rawlin, P. Grant, G. Mitchell, J. Anderson and I. McCauley, “A Study of Feral Carp, Cyprinus Carpio L., Exposed to Microcystis aeruginosa at Lake Mokoan, Australia, and Possible Implications for Fish Health,” Journal of Fish Diseases, Vol. 20, 1997, pp. 81-91. doi:10.1046/j.1365-2761.1997.d01-111.x
[42] R. J. Andersen, H. A. Luu, D. Z. Chen, C. F. Holmes, M. L. Kent, M. Le Blanc, F. J. Taylor and D. E. Williams, “Chemical and Biological Evidence Links Microcystins to Salmon ‘Netpen Liver Disease’,” Toxicon, Vol. 31, No. 10, 1993, pp. 1315-1323. doi:10.1016/0041-0101(93)90404-7
[43] N. R. Bury, F. B. Eddy and G. A. Codd, “The Effects of the Cyanobacterium Microcystis Aeruginosa, the Cyanobacterial Hepatotoxin Microcystin-LR, and Ammonia on Growth Rate and Ionic Regulation of Brown Trout,” Journal of Fish Biology, Vol. 46, 2005, pp. 1042-1054.
[44] K. Gaid and Y. Treal, “Le dessalement des eaux par osmose inverse: l’expérience de Véolia Water,” Desalination, Vol. 203, 2007, pp. 1-14. doi:10.1016/j.desal.2006.03.523
[45] D. E. Williams, M. Craig, T. L. McCready, S. C. Dawe, M. L. Kent, C. F. Holmes and R. J. Andersen, “Evidence for a Covalently Bound form of Microcystin-LR in Salmon Liver and Dungeness Crab Larvae,” Chemical Research in Toxicology, Vol. 10, 1997, pp. 463-469. . doi:10.1021/tx9601519
[46] I. R. Falconer and T. H. Buckley, “Tumour Promotion by Microcystis sp., a Blue-Green Alga Occurring in Water Supplies,” The Medical Journal of Australia, Vol. 150, 1989, pp. 351.
[47] P. C. Turner, A. J. Gammie, K. Hollinrake and G. A. Codd, “Pneumonia Associated with Contact with Cyanobacteria,” British Medical Journal, Vol. 300, 1990, pp. 1440-1441. doi:10.1136/bmj.300.6737.1440
[48] I. Chorus, I. R. Falconer, H. J. Salas and J. Bartram “Health Risks Caused by Freshwater Cyanobacteria in Recreational Waters,” Journal of Toxicology and Environmental Health, Part B, Vol. 3, No. 4, 2000, pp. 323- 347.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.