Computational modeling studies on anti-HIV-1 non-nucleoside reverse transcriptase inhibition by dihydroalkoxybenzyloxopyrimidines analogues: an electrotopological atomistic approach


For the first time we report quantitative structure activity relationship (QSAR) studies based on Kier-Hall Electrotopological State (E-State) Indices for Dihydroalkoxybenzyloxopyrimidines (DABO) derivatives acting as NNRTIs of HIV-1. A dataset of 74 compounds was compiled from published studies and randomly subdivided into training and test sets. To understand the pharmacophoric effect, Kier-Hall Electrotopological State descriptors namely SN1, SN3, SF, SAr, SS, SO, SNO2, SCl, SY (Y = S-alkyl and NH-alkyl), SX (X = Me) and biological activity were used as independent and dependent variable respectively. Statistical results were highly encouraging for the training set multiple linear regression [(MLR): r2 = 0.961, F = 100.41 and q2 = 0.926, neural networks (NN): r2 = 0.966, F = 115.594, degrees of freedom = 40 and k-nearest neighbour (k-NN): r2 = 0.770, q2 = 0.757, degrees of freedom = 40]. Results of validation using a test set showed the same trend as training set (NN > MLR > kNN). The above results suggest that of various functional groups present in DABO such as SN3, SO, SCl, SAr and SNO2 contribute more significantly towards activity. On the other hand SN1, SS, and SF do not play any role in enhancing the activity. The substitution of S-alkyl and NH-alkyl at C2 position is essential though it does not contribute much towards the activity. The substitution of methyl group at C5 position is unfavorable and exhibit negative impact on inhibitory activity. Therefore, it seems reasonable to choose E-state indices as suitable and significant descriptors for exploring the relationship between the pIC50 and the pharmacological properties of the compounds.

Share and Cite:

Sapre, N. , Bhati, T. , Gupta, S. , Pancholi, N. , Raghuvanshi, U. , Dubey, D. , Rajopadhyay, V. and Sapre, N. (2011) Computational modeling studies on anti-HIV-1 non-nucleoside reverse transcriptase inhibition by dihydroalkoxybenzyloxopyrimidines analogues: an electrotopological atomistic approach. Journal of Biophysical Chemistry, 2, 361-372. doi: 10.4236/jbpc.2011.23041.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Lam, S.N., Acharya, P., Wyatt, R., Kwong, P.D. and Bewley, C.A. (2008) Tyrosine-sulfate isosteres of CCR5 N-terminus as tools for studying HIV-1 entry. Bioorganic Medicinal Chemistry, 16, 10113-10120. doi:10.1016/j.bmc.2008.10.005
[2] AIDS Epidemic Update (2008)
[3] Adamson, C.S. and Freed, E.O. (2010) Novel approaches to inhibiting HIV-1 replication. Antiviral Research, 85, 119-141. doi:10.1016/j.antiviral.2009.09.009
[4] Sarafianos, S.G., Marchand, B., Das, K., Himmel, D.M., Parniak, M.A., Hughes, S.H. and Arnold, E. (2009) Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. Journal of Molecular Biology, 385, 693-713. doi:10.1016/j.jmb.2008.10.071
[5] Sluis-Cremer, N. and Tachedjian, G. (2002) Modulation of the oligomeric structures of HIV-1 retroviral enzymes by synthetic peptides and small molecules. European Journal of Biochemistry, 269, 5103-5111. doi:10.1046/j.1432-1033.2002.03216.x
[6] Sahlberg, C. and Zhou, X.-X. (2008) Development of non-nucleoside reverse transcriptase inhibitors for anti-HIV therapy. Anti-Infective Agents in Medicinal Chemistry, 7, 101-117.
[7] J?ger, J. Smerdon, S.J., Wang, J. Boisvert, D.C. and Steitz, T.A. (1994) Comparison of three different crystal forms shows HIV-1 reverse transcriptase displays an internal swivel motion. Structure, 2, 869-876.
[8] Kopp, E.B., Miglietta, J.J., Shrutkowski, A.G., Shih, C.K., Grob, P.M. and Skoog, M.T. (1991) Steady state kinetics and inhibition of HIV-1 reverse transcriptase by a non-nucleoside dipyridodiazepinone, BI-RG-587, using a heteropolymeric template. Nucleic Acids Research, 19, 3035-3039. doi:10.1093/nar/19.11.3035
[9] Cihlar, T. and Ray, A.S. (2010) Nucleoside and nucleotide HIV reverse transcriptase inhibitors: 25 years after zidovudine. Antiviral Research, 85, 39-58. doi:10.1016/j.antiviral.2009.09.014
[10] Jochmans, D., Vingerhoets, J., Arnoult, E., Geeraert, L., Guillemont, J. (2009) Antiviral research: Strategies in antiviral drug discovery. Chapter 3, human immunodeficiency virus type 1 non-nucleoside reverse transcriptase inhibitors. ASM Press, Washington, 33-50.
[11] Spence, R.A., Kati, W.M., Anderson, K.S. and Johnson, K.A. (1995) Mechanism of inhibition of HIV-1 reverse transcriptase by non-nucleoside inhibitors. Science, 267, 988-993. doi:10.1126/science.7532321
[12] Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. and Steitz, T.A. (1992) Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor. Science, 256, 1783-1790. doi:10.1126/science.1377403
[13] Tambuyzer, L., Azijn, H., Rimsky, L.T., Vingerhoets, J., Lecocq, P., Kraus, G., Picchio, G. and de Bethune, M.P. (2009) Compilation and prevalence of mutations associated with resistance to non-nucleoside reverse transcriptase inhibitors. Antiviral Therapy, 14, 103-109.
[14] Baba, M., Tanaka, H., De Clercq, E., Pauwels, R., Balzarini, J., Schols, D., Nakashima, H., Perno, C.F., Walker, R. T. and Miyasaka, T. (1989) Highly specific inhibition of human immunodeficiency virus type 1 by a novel 6-substituted acyclouridine derivative. Biochemical and Biophysical Research Communities, 165, 1375-1381. doi:10.1016/0006-291X(89)92756-3
[15] Miyasaka, T., Tanaka, H., Baba, M., Hayakawa, H., Walker, R.T., Balzarini, J. and De Clercq, E. (1989) A novel lead for specific anti-HIV-1 agents: 1-[(2-hydroxy ethoxy)methyl]-6-(phenylthio)thymine. Journal of Medicinal Chemistry, 32, 2507-2509. doi:10.1021/jm00132a002
[16] Debyser, Z., Pauwels, R., Andries, K., Desmyter, J., Kukla, M., Janssen, P.A. and De Clercq, E. (1991) An antiviral target on reverse transcriptase of human immunodeficiency virus type 1 revealed by tetrahydroimidazo-[4,5,1-jk][1,4]benzodiazepin-2(1H)-one and -thione derivatives. Proceedings of National Academy of Sciences USA, 88, 1451-1455. doi:10.1073/pnas.88.4.1451
[17] Pauwels, R., Andries, K., Desmyter, J., Schols, D., Kukla, M.J., Breslin, H.J., Raeymaeckers, A., Van Gelder, J., Woestenborghs, R., Heykants, J., Schellekens, K., Janssen, M.A.C., De Clercq E., Janssen, P.A.J. (1990) Potent and selective inhibition of HIV-1 replication in vitro by a novel series of TIBO derivatives. Nature, 343, 470-474. doi:10.1038/343470a0
[18] De Bethune, M.P. (2010) Non-nucleoside reverse transcriptase inhibitors (NNRTIs), their discovery, development, and use in the treatment of HIV-1 infection: A review of the last 20 years (1989-2009). Antiviral Research, 85, 75-90. doi:10.1016/j.antiviral.2009.09.008
[19] Dickinson, L., Khoo, S. and Back, D. (2010) Pharmacokinetics and drug-drug interactions of anti-retrovirals: An update. Antiviral Research, 85, 176-189. doi:10.1016/j.antiviral.2009.07.017
[20] Sapre, N.S., Gupta, S., Pancholi, N. and Sapre, N. (2009) A group center overlap based approach for “3D QSAR” studies on TIBO derivatives. Journal of Computational Chemistry, 30, 922-933. doi:10.1002/jcc.21114
[21] Sapre, N.S., Pancholi, N., Gupta, S., Sikarwar, A. and Sapre, N. (2007) Molecular Modelling studies on 2-Amino 6-aryl-Sulphonylbenzonitriles as non-nucleo- side reverse transcriptase inhibitors of HIV-1: A QSPR approach. Journal of Chemical Sciences, 119, 625-630. doi:10.1007/s12039-007-0078-5
[22] Sapre, N.S., Gupta, S., Pancholi, N. and Sapre, N. (2008) Molecular docking studies on tetrahydroimidazo-[4,5,1-jk] [1,4]-benzodiazepinone (TIBO) derivatives as HIV-1 NNRT inhibitors. Journal of Computer Aided Molecular Design, 22, 69-80. doi:10.1007/s10822-007-9161-8
[23] Sapre, N.S., Gupta, S. and Sapre, N. (2008) Assessing ligand efficiencies using template-based molecular docking and tabu-clustering on tetrahydroimidazo-[4,5,1-jk] [1,4]-benzodiazepin-2(1H)-one-thione (TIBO) derivatives as HIV-1RT inhibitors. Journal of Chemical Science, 120, 395-404. doi:10.1007/s12039-008-0063-7
[24] Botta, M., Artico, M., Massa, S., Gambacorta, A., Marongiu, M.E., Pani, A. and La Colla, P. (1992) Synthesis, antimicrobial and antiviral activities of isotrimethoprim and some related derivatives. European Journal of Medicinal Chemistry, 27, 251-257. doi:10.1016/0223-5234(92)90009-P
[25] Costi, R., Di Santo, R., Artico, M., Massa, S., Lavecchia, A., Marceddu, T., Sanna, L., La Colla, P. and Marongiu, M.E. (2000) Structure-activity relationship studies on potential non-nucleoside DABO-like inhibitors of HIV-1 reverse transcriptase. Antiviral Chemistry and Chemotherapy, 11, 117-133.
[26] Sbardella, G., Mai, A., Artico, M., Chimenti, P., Massa, S., Loddo, R., Marongiu, M.E., La Colla, P. and Pani, A. (2001) Structure-activity relationship studies on new DABOS: Effect of substitutions at pyrimidine C-5 and C-6 positions on anti-HIV-1 activity. Antiviral Chemistry and Chemotherapy, 12, 37-50.
[27] Yin, L.-Q., Yu, S.-W., Yao, L.-F., He, Y.-P. and Xie, X.-G., (2008) QSAR studies on 6-(1-naphthylmethyl) substituted S-DABO derivatives as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Chinese Journal of Structural Chemistry, 27, 1214-1222.
[28] De Brito, M.A., Rodrigues, C.R., Cirino, J.J., De Alencastro, R.B., Castro, H.C. and Albuquerque, M.G. (2008) 3D-QSAR CoMFA of a series of DABO derivatives as HIV-1 reverse transcriptase non-nucleoside inhibitors. Journal of Chemical Information and Modelling, 48, 1706-1715. doi:10.1021/ci8001217
[29] Sudbeck, E.A., Mao, C., Vig, R., Venkatachalam, T.K., Tuel-Ahlgren, L. and Uckun, F.M. (1998) Structure-based design of novel dihydroalkoxybenzyloxopyrimidine derivatives as potent non-nucleoside inhibitors of the human immunodeficiency virus reverse transcriptase. Antimicrobial Agents and Chemotherapy, 42, 3225-3233.
[30] Mai, A., Sbardella, G., Artico, M., Ragno, R., Massa, S., Novellino, E., Greco, G., Lavecchia, A., Musiu, C., La Colla, M., Murgioni, C., La Colla, P. and Loddo, R., (2001) Structure-based design, synthesis, and biological evaluation of conformationally restricted novel 2-alkyl thio-6-[1-(2,6-difluorophenyl)alkyl]-3,4-dihydro-5-alkyl-pyrimidin-4 (3H)-ones as non-nucleoside inhibitors of HIV-1 reverse transcriptase. Journal of Medicinal Chemistry, 44, 2544-2554. doi:10.1021/jm010853h
[31] Tramontano, E., Marongiu, M.E., de Montis, A., Loi, A. G., Artico, M., Massa, S., Mai, A. and La Colla, P. (1994) Characterization of the anti-HIV-1 activity of 3,4-dihydro-2-alkoxy-6-benzyl-4-oxopyrimidines (DABOs), new non-nucleo side reverse transcriptase inhibitors. New Microbiologica, 17, 269-279.
[32] Mai, A., Artico, M. Ragno, R., Sbardella, G., Massa, S., Musiu, C., Mura, M., Marturana, F., Cadeddu, A., Maga, G., and La Colla, P. (2005) 5-Alkyl-2-alkyl amino-6- (2,6-difluorophenylalkyl)-3,4-di hydro pyrimidin-4(3H)- ones, a new series of potent, broad-spectrum non-nucleoside reverse transcriptase inhibitors belonging to the DABO family. Bioorganic Medicinal Chemistry, 13, 2065-2077. doi:10.1016/j.bmc.2005.01.005
[33] Mai, A., Artico, M., Sbardella, G., Massa, S., Loi, A. G., Tramontano, E., Scano, P. and La Colla, P. (1995) Synthesis and anti-HIV-1 activity of thio analogues of Dihydroalkoxybenzyloxopyrimidines. Journal of Medicinal Chemistry, 38, 3258-3263. doi:10.1021/jm00017a010
[34] Mai, A., Artico, M., Sbardella, G., Massa, S., Novellino, E., Greco, G., Loi, A.G., Tramontano, E., Marongiu, M.E. and La Colla, P. (1999) 5-Alkyl-2-(alkylthio)-6-(2,6-di halophenylmethyl)-3,4-dihydropyrimidin-4(3H)-ones: Novel potent and selective dihydro-alkoxy-benzyl-oxo- pyrimidine derivatives. Journal of Medicinal Chemistry, 42, 619-627. doi:10.1021/jm980260f
[35] Qin, H., Liu, C., Guo, Y., Wang, R., Zhang, J., Ma, L., Zhang, Z., Wang, X., Cui, Y. and Liu, J. (2010) Synthesis and biological evaluation of novel C5 halogen-func- tionalized S-DABO as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorganic Medicinal Chemistry, 18, 3231-3237. doi:10.1016/j.bmc.2010.03.025
[36] Deeb, O., Hemmateenejad, B., Jaber, A., Garduno-Juarez, R. and Miri, R. (2007) Effect of the electronic and physicochemical parameters on the carcinogenesis activity of some sulfa drugs using QSAR analysis based on genetic-MLR and genetic-PLS. Chemosphere, 67, 2122- 2130. doi:10.1016/j.chemosphere.2006.12.098
[37] Shen, Q., Shi, W.M., Yang, X.P. and Ye, B.X. (2006) Particle swarm algorithm trained neural network for QSAR studies of inhibitors of platelet-derived growth factor receptor phosphorylation. European Journal of Pharmaceutical Science, 28, 369-376. doi:10.1016/j.ejps.2006.04.001
[38] Kier, L.B. and Hall, L.H. (1990) An electrotopological-state index for atoms in molecules. Pharmaceutical Research, 7, 801-807. doi:10.1023/A:1015952613760
[39] Hall, L.H. and Kier, L.B., (1995) Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. Journal of Chemical. Information and Computer Science, 35, 1039- 1045.
[40] Kier, L.B. and Hall, L.H., (1999) Molecular structure description: The electrotopological state. Academic Press, San Diego.
[41] VLife Sciences Technologies: MDS 3.5 (2010) Molecular Design Suite, Pvt Ltd. Pune, India.
[42] E-Calc version (1999) 1.1.
[43] Sapre, N.S., Pancholi, N. and Gupta, S. (2008) Computational modeling of substitution effect on HIV-1 non-nucleoside reverse transcriptase inhibitors with Kier-Hall electrotopological state (E-State) indices. Internet Electronic Journal of Molecular Design, 7, 55-67.
[44] Sapre, N.S., Pancholi, N., Gupta, S. and Sapre, N. (2008) Computational modeling of tetrahydroimidazo-[4,5,1-jk] [1,4]-benzodiazepinone derivatives: An atomistic drug design approach using Kier-Hall electrotopological state (E-State) indices. Journal of Computational Chemistry, 29, 1699-1706. doi:10.1002/jcc.20931
[45] Wang, H.Y., Li, Y., Ding, J., Wang, Y. and Chang, Y.Q. (2008) Prediction of binding affinity for estrogen receptor alpha modulators using statistical learning approaches. Journal of Molecular Diversity, 12, 93-102.
[46] Ragno, R., Mai, A., Sbardella, G., Artico, M., Massa, S., Musiu, C., Mura, M., Marturana, F., Cadeddu, A. and La Colla, P. (2004) Computer-aided design, synthesis, and anti-HIV-1 activity in vitro of 2-alkylamino-6-[1-(2,6-di fluorophenyl)alkyl]-3,4-dihydro-5-alkylpyrimidin-4(3H)- ones as novel potent non-nucleoside reverse transcriptase inhibitors, also active against the Y181C variant. Journal of Medicinal Chemistry, 47, 928-934. doi:10.1021/jm0309856
[47] Sun, G.F., Kuang, Y.Y., Chen, F.E., De Clercq, E., Balzarini, J. and Pannecouque, C. (2005) Non-nucleoside HIV reverse transcriptase inhibitors, Part 6[1]: synthesis and anti-HIV activity of novel 2-[(arylcarbonylmethyl) thio]-6-arylthio DABO analogues. Archive der Pharmazie, 338, 457-461. doi:10.1002/ardp.200400961
[48] Petricci, E., Mugnaini, C., Radi, M., Togninelli, A., Bernardini, C., Manetti, F., Parlato, M.C., Renzulli, M.L., Alongi, M., Falciani, C., Corelli, F. and Botta, M., (2006) Towards new methodologies for the synthesis of biologically interesting 6-substituted pyrimidines and 4(3H)-pyrimidinones. Arkivoc, 7, 452-478.
[49] Petricci, E., Botta, M., Corelli, F. and Mugnaini, C., (2002) An improved synthesis of solid-supported reagents (SSRs) for selective acylation of amines by microwave irradiation. Tetrahedron Letter, 43, 6507-6509. doi:10.1016/S0040-4039(02)01478-8
[50] Guha, R. and Jurs, P.C. (2005) Interpreting computational neural network QSAR models: A measure of descriptor importance. Journal of Chemical Information and Modelling, 45, 800-806. doi:10.1021/ci050022a
[51] McCulloch, W.S. and Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 5, 115-133.
[52] Hoskins, J.C. and Himmelbau, D.M. (1988) Artificial neural network models of knowledge representation in chemical engineering. Computers and Chemical Engineering, 12, 881-890. doi:10.1016/0098-1354(88)87015-7
[53] Cover, T. and Hart, P. (1967) Nearest neighbour pattern classification. IEEE Transactions Information Theory, 13, 21-27. doi:10.1109/TIT.1967.1053964
[54] Hand, D., Mannila, H. and Smyth, P. (2001) Principles of data mining. The MIT Press, Cambridge, USA.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.