Share This Article:

Spectral Properties and Parameters Calculation of Er:Ligdf4 Crystal

Abstract PP. 1161-1165
DOI: 10.4236/msa.2011.28156    3,517 Downloads   6,607 Views   Citations


The absorption and fluorescence spectra of Er3+:LiGdF4 crystal was measured at room temperature. Base on the Judd-Ofelt theory, the intensity parameters of Er3+ in LiGdF4 crystal were determined, Ω2=0.905×10-20cm2, Ω4=2.47×10-20cm2 and Ω6=4.92×10-20cm2. The values of the radiative transition probabilities, branching ratios, integrated emission cross-section and radiative lifetimes of excited states of Er3+ in LiGdF4 crystal were calculated. The stimulated emission cross-section was also evaluated for the 4I13/24I15/2 transitions. In comparisons with other Er3+ doped laser crystals, Er3+:LiGdF4 crystal has potential as a promising laser crystal.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Li, Y. Zhang, X. Zhang, D. Miao, H. Lin, M. Tonelli, F. Zeng and J. Liu, "Spectral Properties and Parameters Calculation of Er:Ligdf4 Crystal," Materials Sciences and Applications, Vol. 2 No. 8, 2011, pp. 1161-1165. doi: 10.4236/msa.2011.28156.


[1] S. Q. Man, E. Y. B. Pun and P. S. Chung, “Upconversion luminescence of Er3+ in Alkali Bismuth Gallate Glasses,” Applied Physics Letters, Vol. 77, No. 4, 2000, pp. 483- 485.
[2] R. A. Mcfarlane. “Upconversion Laser in BaY2F8:Er 5% Pumped by Ground-State and Excited-State Absorption,” Optics InfoBase, Vol. 11, No. 5, 1994, pp. 871-800.
[3] V. Sudesh and J. A. Piper, “Spectroscopy, Modeling, and Laser Operation of Thulium-doped Crystals at 2.3 μm,” IEEE Journal of Quantum Electronics, Vol. 36, No. 7, 2000, pp. 879-884.
[4] R. Sosa, I. F?ldvári, A. Watterich, A. Munoz, R. S. Maillard and G. Kugel, “Photoluminescence of Er3+ ions in Bi2TeO5 Single Crystals,” Journal of Luminescence, Vol. 111, No. 1-2, 2005, pp. 25-35.
[5] R. C. Stoneman and L. Esterowitz, “Efficient, Broadly Tunable, Laser-pumped Tm: YAG and Tm: YSGG cw Lasers,” Optics Letters, Vol. 15, No. 9, 1990, pp. 486-488.
[6] E. C. Honea, R. J. Beach, S. B. Sutton, J. A. Speth, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel and S. A. Payne, “115W Tm: YAG CW Diode-pumped Solid-State Laser,” IEEE Journal of Quantum Electron, Vol. 33, No. 9, 1997, pp. 1592-1600.
[7] S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano and W. F. Krupke, “The Mechanism of Tm to Ho Energy Transfer in LiYF4,” Journal of Physics: Condensed Matter, Vol. 4, No. 44, 1992, pp. 8525-8542.
[8] F. Cornacchia, D. Parisi, C. Bernardini, A. Toncelli and M. Tonelli, “Efficient, Diode-pumped Tm3+: BaY2F8 Vibronic Laser,” Optics Express, Vol. 12, No. 9, 2004, pp. 1982-1989.
[9] L. H. Guilbert, J. Y. Gesland, A. Bulou and R. Retoux, “Structure and Raman Spectroscopy of Czochralski-Gr- own Barium Yttrium and Barium Ytterbium Fluorides Crystals,” Materials Research Bulletin, Vol. 28, No. 9, 1993, pp. 923-930.
[10] B. M. Walsh, N. P. Barnes and B. Di Bartolo, “The Temperature Dependence of Energy Transfer between the Tm 3F4 and Ho5I7 Manifolds of Tm-sensitized Ho Luminescence in YAG and YLF,” Journal of Luminescence, Vol. 90, No. 1-2, 2000, pp. 39-48.
[11] B. R. Judd, “Optical Absorption Intensities of Rare-Earth Ions,” Physical Review, Vol. 127, No. 3, 1962, pp. 750- 761.
[12] G. S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions,” The Journal of Chemical Physics, Vol. 37, No. 3, 1962, pp. 511-520.
[13] E. Comini, A. Toncelli, M. Tonelli, E. Zannoni, E. Cavalli, A. Speghini and M. Bettinelli, “Optical Spectroscopy and Fluorescence Dynamics of Er3+ in Ca3Sc2Ge3O12 Crystal,” Journal of the Optical Society of American B, Vol. 14, No. 8, 1997, pp. 1938-1944.
[14] J. Amina, B. Dussardierb, T. Schweizera, and M. Hempsteada, “Spectroscopic Analysis of Er3+ transitions in Lithium Niobate,” Journal of Luminescence, Vol. 69, No.1, 1996, pp. 17-26.
[15] A. A. Kaminskii, V. S. Mironov, A. Kornienko, S. N. Bagaev, G. Boulon, A. Brenier and B. Di Bartolo, “New Laser Properties and Spectroscopy of Orthorhombic Crystals YAlO3:Er3+. Intensity Luminescence Characteritics, Stimulated Emission, and Full Set of Squared Reduced-Matrix Elements |<α[SL]J| |U(t)||α'[S'L']J'>|2 for Er3+ Ions,” Physica Status Solidi (a), Vol. 151, No.1, 1995, pp. 231-255.
[16] A. A. Kaminskii, A. G. Petrosyan, A. G. Denisenko, T. I. Butaeva, V. A. Fedorov and S. E. Sarkisov, “Spectrosco pic Properties and 3 μm Stimulated Emission of Er3+ ions in the (Y1-xErx)3Al5O12 and (Lu1-xEr3)3Al5O12 Garnet Crystal Systems,” Physica Status Solidi (a), Vol. 71, No. 2, 1982, pp. 291-312.
[17] R. Sosa, I. F?ldvári, A. Watterich, A. Munoz, R. S. Maillard and G. Kugel, “Photoluminescence of Er3+ Ions in Bi2TeO5 Single Crystals,” Journal of Luminescence, Vol. 111, No. 1-2, 2005, pp. 25-35.
[18] I. Sokólska, E. Heumann, S. Kück, T. Lukasiewicz, “Laser Oscillation of Er3+:YVO4 and Er3+, Yb3+:YVO4 Crystals in the Spectral Range around 1.6 μm,” Applied Physics B Lasers and Optics, Vol. 71, No. 6, 2000, pp. 893-896.
[19] W. Zhao, L. Z. Zhang and G. F. Wang, “Growth, Thermal and Spectral Characterization of Er3+- doped Li2Gd4 (Mo- O4)7crystal,” Journal of Crystal Growth, Vol. 311, No. 8, 2009, pp. 2336-2340.
[20] F. Cornacchia, A. Di Lieto and M. Tonelli, “2μm Lasers with Fluoride Crystals: Researchand Development,” Progress in Quantum Electronics, Vol. 33, No. 1-2, 2009, pp. 61-109.
[21] J. L. Doualan, P. Camy, R. Moncorge, E. Daran, M. Couchaud, B. Ferrand, “Latest Developments of Bulk Crystals and Thin Films of Rare-Earth Doped CaF2 for Laser Applications,” Journal of Fluorine Chemistry, Vol. 128, No. 4, 2007, pp. 459-464.

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.