Share This Article:
Review Paper

A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone

Abstract PP. 1-12
DOI: 10.4236/oalib.1100994    996 Downloads   1,308 Views   Citations
Author(s)    Leave a comment

ABSTRACT

Understanding the propagation of acoustic waves through a liquid-perfused porous solid framework such as cancellous bone is an important pre-requisite to improve the diagnosis of osteoporosis by ultrasound. In order to elucidate the propagation dependence upon the material and structural properties of cancellous bone, several theoretical models have been considered to date, with Biot-based models demonstrating the greatest potential. This paper describes the fundamental basis of these models and reviews their performance.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Aygün, H. (2014) A Review of the State of Art in Applying Biot Theory to Acoustic Propagation through the Bone. Open Access Library Journal, 1, 1-12. doi: 10.4236/oalib.1100994.

References

[1] Thomsen, J.S., Ebbesen, E.N. and Mosekilde, L. (2002) Age-Related Differences between Thinning of Horizontal and Vertical Trabeculae in Human Lumbar Bone as Assessed by a New Computerized Method. Bone, 31, 136-142.
[2] Johnell, O. and Kanis, J.A. (2006) An Estimate of the Worldwide Prevalence and Disability Associated with Osteoporotic Fractures. Osteoporosis International, 17, 1726-1733.
http://dx.doi.org/10.1007/s00198-006-0172-4
[3] British Orthopaedic Association (2007) The Care of Patients with Fragility Fracture.
[4] Burge, R.T., Worley, D. and Johansen, A. (2001) The Cost of Osteoporotic Fractures in the UK: Projections for 2000-2020. Journal of Medical Economics, 4, 51-52.
http://dx.doi.org/10.3111/200104051062
[5] Rosen, C.J. (2004) Anatomy, Physiology and Disease. In: Langton, C.M. and Njeh, C.F., Eds. The Physical Measurement of Bone, IOPP, 3-34.
[6] Njeh, C.F. and Shepherd, J.A. (2004) Absorptiometric Measurement. In: Langton, C.M. and Njeh, C.F., Eds., The Physical Measurement of Bone, IOPP, 267-307.
[7] Lang, T. (2004) Quantitative Computed Tomography. In: Langton, C.M., & Njeh, C.F. Eds., The Physical Measurement of Bone, IOPP, 308-318.
[8] Pothuaud, L. and Majumdar, S. (2004) Magnetic Resonance Imaging. In: Langton, C.M. and Njeh, C.F., Eds., The Physical Measurement of Bone, IOPP, 379-411.
[9] Njeh, C.F., Boivin, C.M. and Langton, C.M. (1997) The Role of Ultrasound in the Management of Osteoporosis: A Review. Osteoporosis International, 7, 7-22.
http://dx.doi.org/10.1007/BF01623454
[10] Njeh, C.F., Hodgskinson, R., Currey, J.D. and Langton, C.M. (1996) Orthogonal Relationships between Ultrasonic Velocity and Material Properties of Bovine Cancellous Bone. Medical Engineering & Physics, 18, 373-381.
http://dx.doi.org/10.1016/1350-4533(95)00064-X
[11] Hodgskinson, R., Njeh, C.F., Whitehead, M.A. and Langton, C.M. (1996) The Non-Linear Relationship between BUA and Porosity in Cancellous Bone. Physics in Medicine & Biology, 41, 2411-2420.
http://dx.doi.org/10.1088/0031-9155/41/11/012
[12] Langton, C.M., Whitehead, M.A., Haire, T.J. and Hodgskinson, R. (1998) Fractal Dimension Predicts Broadband Ultrasound Attenuation in Stereolithography Models of Cancellous Bone. Physics in Medicine and Biology, 43, 467-471.
http://dx.doi.org/10.1088/0031-9155/43/2/019
[13] Langton, C.M., Palmer, S.B. and Porter, R.W. (1984) The Measurement of Broadband Ultrasonic Attenuation in Cancellous Bone. Engineering in Medicine, 13, 89-91.
http://dx.doi.org/10.1243/EMED_JOUR_1984_013_022_02
[14] Boutin, C. (2007) Rayleigh Scattering of Acoustic Waves in Rigid Porous Media. Journal of the Acoustical Society of America, 122, 1888-1905.
http://dx.doi.org/10.1121/1.2756755
[15] Chernov, L. (1960) Wave Propagation in a Random Medium. McGraw-Hill, New York.
[16] Schoenberg, M. (1983) Wave Propagation in a Finely Laminated Periodic Elastoacoustic Medium. Applied Physics Letters, 42, 350-352.
http://dx.doi.org/10.1063/1.93929
[17] Schoenberg, M. (1984) Wave Propagation in Alternating Solid and Fluid Layers. Wave Motion, 6, 303-320.
http://dx.doi.org/10.1016/0165-2125(84)90033-7
[18] Schoenberg, M. and Sen, P.N. (1986) Wave Propagation in Alternating Solid and Viscous Fluid Layers: Size Effects in Attenuation and Dispersion of Fast and Slow Waves. Applied Physics Letters, 48, 1249-1251.
http://dx.doi.org/10.1063/1.96994
[19] Hughes, E.R., Leighton, T.G., Petley, G.W. and White, P.R. (1999) Ultrasonic Propagation in Cancellous Bone: A New Stratified Model. Ultrasound in Medicine and Biology, 25, 811-821.
http://dx.doi.org/10.1016/S0301-5629(99)00034-4
[20] Hughes, E.R., Leighton, T.G., White, P.R. and Petley, G.W. (2007) Investigation of an Anisotropic Tortuosity in a Biot Model of Ultrasonic Propagation in Cancellous Bone. Journal of the Acoustical Society of America, 121, 568-574.
http://dx.doi.org/10.1121/1.2387132
[21] Biot, M.A. (1956) Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid. I. Low Frequency Range. Journal of the Acoustical Society of America, 28, 168-178.
http://dx.doi.org/10.1121/1.1908239
[22] Biot, M.A. (1956) Theory of Propagation of Elastic Waves in a Fluid Saturated Porous Solid. II. High Frequency Range. Journal of the Acoustical Society of America, 28, 179-191.
http://dx.doi.org/10.1121/1.1908241
[23] McKelvie, M.L. and Palmer, S.B. (1991) The Interaction of Ultrasound with Cancellous Bone. Physics in Medicine and Biology, 36, 1331-1340.
http://dx.doi.org/10.1088/0031-9155/36/10/003
[24] Hosokawa, A. and Otani, T. (1997) Ultrasonic Wave Propagation in Bovine Cancellous Bone. Journal of the Acoustical Society of America, 101, 558-562.
http://dx.doi.org/10.1121/1.418118
[25] Haire, T.J. and Langton, C.M. (1999) Biot Theory: A Review of Its Application on Ultrasound Propagation through Cancellous Bone. Bone, 24, 291-295.
http://dx.doi.org/10.1016/S8756-3282(99)00011-3
[26] Fellah, Z.E.A., Chapelon, J.Y., Berger, S., Lauriks, W. and Depollier, C. (2004) Ultrasonic Wave Propagation in Human Cancellous Bone: Application of Biot Theory. Journal of the Acoustical Society of America, 116, 61-73.
http://dx.doi.org/10.1121/1.1755239
[27] Sebaa, N., Fellah, Z., Fellah, M., Ogam, E., Wirgin, A., Mitri, F., Depollier, C. and Lauriks, W. (2006) Ultrasonic Characterisation of Human Cancellous Bone Using the Biot Theory: Inverse Problem. Journal of the Acoustical Society of America, 120, 1816-1824.
http://dx.doi.org/10.1121/1.2335420
[28] Pakula, M., Padilla, F., Laugier, P. and Kaczmarek, M. (2008) Application of Biot’s Theory to Ultrasonic Characterization of Human Cancellous Bones. Journal of the Acoustical Society of America, 123, 2415-2423.
[29] Attenborough, K., Qin, Q., Fagan, M.J., Shin, H.C. and Langton, C.M. (2005) Measurements of Tortuosity in Stereolithographical Bone Replicas Using Audio-Frequency Pulses. Journal of the Acoustical Society of America, 118, 2779-2782.
[30] Carcione, J. (1996) Wave Propagation in Anisotropic, Saturated Porous Media: Plane-Wave Theory and Numerical Simulation. Journal of the Acoustical Society of America, 99, 2655-2666.
http://dx.doi.org/10.1121/1.414809
[31] Roh, H.S., Lee, K.I. and Yoon, S.W. (2003) Acoustic Characteristics of a Non-Rigid Porous Medium with Circular Cylindrical Pores. Journal of the Korean Physical Society, 45, 55-62.
[32] Attenborough, K. (1982) Acoustical Characteristics of Porous Materials. Physics Reports, 82, 179-227.
http://dx.doi.org/10.1016/0370-1573(82)90131-4
[33] Attenborough, K. (1983) Acoustic Characteristics of Rigid Fibrous Absorbents and Granular Materials. Journal of the Acoustical Society of America, 73, 785-799.
http://dx.doi.org/10.1121/1.389045
[34] Lee, K.I., Roh, H.S. and Yoon, S.W. (2003) Acoustic Wave Propagation in Bovine Cancellous Bone: Application of the Modified Biot-Attenborough Model. Journal of the Acoustical Society of America, 114, 2284-2293.
http://dx.doi.org/10.1121/1.1610450
[35] Lee, K.I. and Yoon, S.W. (2006) Comparison of Acoustic Characteristics Predicted by Biot’s Theory and the Modified Biot-Attenborough Model in Cancellous Bone. Journal of Biomechanics, 39, 364-368.
http://dx.doi.org/10.1016/j.jbiomech.2004.12.004
[36] Lee, K.I., Hughes, E.R., Humphery, V.F., Leighton, T.G. and Choi, M.J. (2007) Empirical Angle-Dependent Biot and MBA Models for Acoustic Anisotropy in Cancellous Bone. Physics in Medicine and Biology, 52, 59-73.
http://dx.doi.org/10.1088/0031-9155/52/1/005
[37] Aygün, H., Attenborough, K., Postema, M., Lauriks, W. and Langton, C.M. (2009) Predictions of Angle-Dependent Tortuosity and Elasticity Effects on Sound Propagation in Cancellous Bone. Journal of the Acoustical Society of America, 126, 3286-3290.
http://dx.doi.org/10.1121/1.3242358
[38] Aygün, H., Attenborough, K., Lauriks, W. and Langton, C.M. (2010) Ultrasonic Wave Propagation in Stereo-Lithographical Bone Replicas. Journal of the Acoustical Society of America, 127, 3781-3789.
http://dx.doi.org/10.1121/1.3397581
[39] Aygün, H., Attenborough, K., Lauriks, W., Rubini, P.A. and Langton, C.M. (2011) Wave Propagation in Stereo-Lithographical (STL) Bone Replicas at Oblique Incidence. Applied Acoustics, 72, 458-463.
http://dx.doi.org/10.1016/j.apacoust.2011.01.010
[40] Aygün, H. and Barlow, C. (2015) Ultrasonic Wave Propagation in Porous Rigid Ceramics at Oblique Incidence. Applied Acoustics, 88, 6-11.
http://dx.doi.org/10.1016/j.apacoust.2014.07.011
[41] Gibson, L.J. (1985) The Mechanical Behaviour of Cancellous Bone. Journal of Biomechanics, 18, 317-328.
http://dx.doi.org/10.1016/0021-9290(85)90287-8
[42] Johnson, D.L., Koplik, J. and Dashen, R. (1987) Theory of Dynamic Permeability and Tortuosity in Fluid-Saturated Porous Media. Journal of Fluid Mechanics, 176, 379-402.
http://dx.doi.org/10.1017/S0022112087000727
[43] Williams, J.L. (1992) Ultrasonic Wave Propagation in Cancellous and Cortical Bone: Predictions of Some Experimental Results by Biot’s Theory. Journal of the Acoustical Society of America, 91, 1106-1112.
http://dx.doi.org/10.1121/1.402637
[44] Allard, J.F. (1993) Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials. Chapman and Hall, London.
[45] Leclaire, P., Swift, M.J. and Horoshenkov, K.V. (1998) Determining the Specific Area of Porous Acoustic Materials from Water Extraction Data. Journal of Applied Physics, 84, 6886-6890.
http://dx.doi.org/10.1063/1.368985
[46] Haiat, G., Lhémery, A., Padilla, F., Laugier, P. and Naili, S. (2008) Modelling of “Anomalous” Velocity Dispersion in Trabecular Bone: Effect of Maultiple Scattering and of Viscous Absorption. Euro-Noise, Paris.
[47] Atalla, N., Panneton, R. and Deberque, P. (1997) A Mixed Displacement-Pressure Formulation for Poroelastic Materials. Journal of Acoustical Society of America, 104, 1444-1452.
http://dx.doi.org/10.1121/1.424355
[48] Gorog, S., Panneton, R. and Atalla, N. (1997) Mixed Displacement-Pressure Formulation for Acoustic Anisotropic Open Porous Media. Journal of Applied Physics, 82, 4192-4196.
[49] Hörlin, N.E., Nordström, M. and Göransson, P. (2001) A 3-D Hierarchical FE Formulation of Biots Equations for Elastoacoustic Modeling of Porous Media. Journal of Sound and Vibration, 245, 633-652.
http://dx.doi.org/10.1006/jsvi.2000.3556
[50] Panneton, R. and Atalla, N. (1998) An Efficient Scheme for Solving the Three-Dimensional Poroelasticity Problem in Acoustics. Journal of the Acoustical Society of America, 101, 3287-3298.
http://dx.doi.org/10.1121/1.418345

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.