TiO2 Nanotubes for Room Temperature Toluene Sensor


TiO2 nanotubes were used to prepare gas sensor and the gas sensing properties towards toluene were analyzed. Titania nanotube arrays were fabricated via electrochemical anodization method in glycerol electrolytes containing NH4F. The sensor fabricated from these nanotubes exhibits a good response to toluene at room temperature with good sensitivity. The toluene sensing properties were tested from 20 to 150 ppm concentrations.

Share and Cite:

Perillo, P. , Rodríguez, D. and Boggio, N. (2014) TiO2 Nanotubes for Room Temperature Toluene Sensor. Open Access Library Journal, 1, 1-7. doi: 10.4236/oalib.1101040.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Streicher, H.Z., Gabow, P.A., Moss, A.H., Kono, D. and Kaehny, W.D. (1981) Syndromes of Toluene Sniffing in Adults. Annals of Internal Medicine, 94, 758-762.
[2] Devathasan, G., Low, D., Teoh, P.C., Wan, S.H. and Wong, P.K. (1984) Complications of Chronic Glue (Toluene) Abuse in Adolescents. Australian & New Zealand Journal of Medicine, 14, 39-43.
[3] Molhave, L., Clausen, G., Berglund, B., De Ceaurriz, J., Kettrup, A., Lindvall, T., Maroni, M., Pickering, A.C., Risse, U., Rothweiler, H., Seifert, B. and Younes, M. (1997) Total Volatile Organic Compounds (TVOC) in Indoor Air Quality Investigations. Indoor Air, 7, 225-240.
[4] Hempel, A.J., Kjaergaard, K.S., Molhave, L. and Hundnell, H.K. (1999) Sensory Eye Irritation in Humans Exposed to Mixture of Volatile Organic Compounds. Archives of Environmental Health, 54, 416-424.
[5] Geng, Q., Lin, X., Si, R., Chen, X., Dai, W., Fu, X. and Wang, X. (2012) The Correlation between the Ethylene Response and Its Oxidation over TiO2 under UV Irradiation. Sensors and Actuators B, 174, 449-457.
[6] Zhang, X., Zhang, J., Jia, Y., Xiao, P. and Tang, J. (2012) TiO2 Nanotube Array Sensor for Detecting the SF6 Decomposition Product SO2. Sensors, 12, 3302-3313.
[7] Lin, S., Li, D., Wu, J., Li, X. and Akbar, S.A. (2011) A Selective Room Temperature Formaldehyde Gas Sensor Using TiO2 Nanotube Arrays. Sensors and Actuators B, 156, 505-509.
[8] Sennik, E., Colak, Z., Kιlιnç, N. and Zafer Ziya, O. (2010) Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor. International Journal of Hydrogen Energy, 35, 4420-4427.
[9] Varghese, O.K., Mor, G.K., Grimes, C.A., Paulose, M. and Mukherjee, N. (2004) A Titania Nanotube Array Room Temperature Sensor for Selective Detection for Hydrogen at Low Concentration. Journal of Nanoscience and Nanotechnology, 4, 733-737.
[10] Kwon, Y., Kim, H., Lee, S., Chin, I.-J., Seong, T.-Y., Lee, W.I. and Lee, C. (2012) Enhanced Ethanol Sensing Properties of TiO2 Nanotube Sensors. Sensors and Actuators B, 173, 441-446.
[11] Kim, H., Hong, M.H., Jang, H.W., Yoon, S.J. and Park, H.H. (2013) CO Gas Sensing Properties of Direct-Patternable TiO2 Thin Films Containing Multi-Wall Carbon Nanotubes. Thin Solid Films, 529, 89-93.
[12] Wetchakun, K., Samerjai, T., Tamaekong, N., Liewhiran, C., Siriwong, C., Kruefu, V., Wisitsoraat, A., Tuantranont, A. and Phanichphant, S. (2011) Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases. Sensors and Actuators B: Chemical, 160, 580-591.
[13] Perillo, P.M. and Rodríguez, D.F. (2012) The Gas Sensing Properties at Room Temperature of TiO2 Nanotubes by Anodization. Sensors and Actuators B: Chemical, 171-172, 639-643.
[14] Perillo, P.M. and Rodríguez, D.F. (2014) A Room Temperature Chloroform Sensor Using TiO2 Nanotubes. Sensors and Actuators B: Chemical, 193, 263-266.
[15] Deng, L., Ding, X., Zeng, D., Zhang, S. and Xie, C. (2012) High Sensitivity and Selectivity of C-Doped WO3 Gas Sensors toward Toluene and Xylene. IEEE Sensors Journal, 12, 2209-2214.
[16] Wang, L., Wang, S., Xu, M., Hu, X., Zhang, H., Wang, Y. and Huang, W. (2013) A Au-Functionalized ZnO Nanowire Gas Sensor for Detection of Benzene and Toluene. Physical Chemistry Chemical Physics, 15, 17179-17186.
[17] Song, X., Zhang, D. and Fan, M. (2009) A Novel Toluene Sensor Based on ZnO-SnO2 Nanofiber Web. Applied Surface Science, 255, 7343-7347.
[18] Qi, Q., Zhang, T., Liu, L. and Zheng, X. (2009) Synthesis and Toluene Sensing Properties of SnO2 Nanofibers. Sensors and Actuators B: Chemical, 137, 471-475.
[19] Zeng, Y., Zhang, T., Wang, L., Kang, M., Fan, H., Wang, R. and He, Y. (2009) Enhanced Toluene Sensing Characteristics of TiO2-Doped Flowerlike ZnO Nanostructures. Sensors and Actuators B: Chemical, 140, 73-78.
[20] Ding, X., Zeng, D., Zhang, S. and Xie, C. (2011) C-Doped WO3 Microtubes Assembled by Nanoparticles with Ultrahigh Sensitivity to Toluene at Low Operating Temperature. Sensors and Actuators B: Chemical, 155, 86-92.
[21] Kim, K.S., Baek, W.H., Kim, J.M., Yoon, T.S., Lee, H.H., Kang, C.J. and Kim, Y.S. (2010) A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method. Sensors, 10, 765-774.
[22] Mura, F., Masci, A., Pasquali, M. and Pozio, A. (2009) Effect of a Galvanostatic Treatment on the Preparation of Highly Ordered TiO2 Nanotubes. Electrochimica Acta, 54, 3794-3798.
[23] Macák, J.M., Tsuchiya, H. and Schmuki, P. (2005) High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium. Angewandte Chemie International Edition, 44, 2100-2102.
[24] Macak, J.M. and Schmuki, P. (2006) Anodic Growth of Self-Organized Anodic TiO2 Nanotubes in Viscous Electrolytes. Electrochimica Acta, 52, 1258-1264.
[25] Park, H. and Kim, H.G. (2010) Characterizations of Highly Ordered TiO2 Nanotube Arrays Obtained by Anodic Oxidation. Transactions on Electrical and Electronic Materials, 11, 112-115.
[26] Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z. and Dickey, E.C. (2001) Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation. Journal of Materials Research, 16, 3331-3334.
[27] Ge, R., Fu, W., Yang, H., Zhang, Y., Zhao, W., Liu, Z., Wang, C., Zhu, H., Yu, Q. and Zou, G. (2008) Fabrication and Characterization of Highly-Ordered Titania Nanotubes via Electrochemical Anodization. Materials Letters, 62, 2688-2691.
[28] Regonini, D., Jaroenworaluck, A., Stevens, R. and Bowen, C.R. (2010) Effect of Heat Treatment on the Properties and Structure of TiO2 Nanotubes: Phase Composition and Chemical Composition. Surface and Interface Analysis, 42, 139-144.
[29] Macak, J.M., Aldabergerova, S., Ghicov, A. and Schmuki, P. (2006) Smooth Anodic TiO2 Nanotubes: Annealing and Structure. Physica Status Solidi (A), 203, 67-69.
[30] Li, G.J., Zhang, X.H. and Kawi, S. (1999) Relationships between Sensitivity, Catalytic Activity, and Surface Areas of SnO2 Gas Sensors. Sensors and Actuators B: Chemical, 60, 64-70.
[31] Hieu, N., Thuy, L.T.B. and Chien, N.D. (2008) Highly Sensitive Thin Film NH3 Gas Sensor Operating at Room Temperature Based on SnO2/MWCNTs Composite. Sensors and Actuators B: Chemical, 129, 888-895.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.