Extended Finite Element Modeling: Basic Review and Programming

Abstract Full-Text HTML XML Download Download as PDF (Size:798KB) PP. 713-718
DOI: 10.4236/eng.2011.37085    7,355 Downloads   13,788 Views   Citations

ABSTRACT

In this work, we have exposed a recent method for modeling crack growth without re-meshing. The main advantage of this method is its capability in modeling discontinuities independently, so the mesh is prepared without any considering the existence of discontinuities. The paper covers the formulation and implementation of XFEM, and discusses various aspects of the approach (enrichments functions, level set representation, numerical integration…). Numerical experiments show the effectiveness and robustness of the XFEM implementation.

Cite this paper

Y. Abdelaziz, K. Bendahane and A. Baraka, "Extended Finite Element Modeling: Basic Review and Programming," Engineering, Vol. 3 No. 7, 2011, pp. 713-718. doi: 10.4236/eng.2011.37085.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. Tong and T. Pian, “On the Convergence of the Finite Element Method for Problems with Singularity,” International Journal of Solids and Structures, Vol. 9, No. 3, 1973, pp. 313-321. doi:10.1016/0020-7683(73)90082-6
[2] T. Belytschko and T. Black, “Elastic Crack Growth in Finite Elements with Minimal Remeshing,” International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, 1999, pp. 601-620. doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[3] Y. Abdelaziz and A. Hamouine, “A Survey of the Extended Finite Element,” Computers and Structures, Vol. 86, No. 11-12, 2008, pp. 1141-1151. doi:10.1016/j.compstruc.2007.11.001
[4] Y. Abdelaziz, A. Nabbou and A.Hamouine, “A State-of-the-Art Review of the X-FEM for Computational Fracture Mechanics,” Applied Mathematical Modelling, Vol. 33, No. 12, 2009, pp. 4269-4282. doi:10.1016/j.apm.2009.02.010
[5] J. Dolbow, “An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics,” PhD Thesis, Northwestern University, Chicago, 1999.
[6] N. Moes, J. Dolbow and T. Belytschko, “A Finite Element Method for Crack Growth without Remeshing,” International Journal for Numerical Methods in Engineering, Vol. 46, No. 1, 1999, pp. 131-150.
[7] M. Stolarska, D. D. Chopp, N. Moes and T. Belyschko, “Modelling Crack Growth by Level Sets in the Extended Finite Element Method,” International Journal for Numerical Methods in Engineering, Vol. 51, No. 8, 2001, pp. 943-960. doi:10.1002/nme.201
[8] S. Osher and J. Sethian, “Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” Journal of Computational Physics, Vol. 79, No. 1, 1988, pp. 12-49. doi:10.1016/0021-9991(88)90002-2
[9] N. Sukumar and J. H. Prevost, “Modeling Quasi-Static Crack Growth with the Extended Finite Element Method Part I: Computer Implementation,” International Journal of Solids and Structures, Vol. 40, No. 26, 2003, pp. 7513-7537. doi:10.1016/j.ijsolstr.2003.08.002
[10] J. Prevost, “Dynaflow,” Princeton University, Princeton, 1983.
[11] R. Huang, N. Sukumar and J. Prevost, “Modeling Quasi-Static Crack Growth with the Extended Finite Element Method Part II: Numerical Applications,” International Journal of Solids and Structures, Vol. 40, 2003, pp. 7539-7352. doi:10.1016/j.ijsolstr.2003.08.001
[12] I. Nistro, O. Pantale and S. Caperaa, “On the Modeling of the Dynamic Crack Propagation by Extended Finite Element Method: Numerical Implantation in DYNELA Code,” 8th International Conference on Computational Plasticity, Barcelona, 5-8 September 2005.
[13] O. Pantale, S. Caperaa and R. Rakotomalala, “Development of an Object Oriented Finite Element Program: Application to Metal Forming and Impact Simulation,” J-CAM, Vol. 186, No. 1-2, 2004, pp. 341-351.
[14] S. Bordas, P. Nguyen, C. Dunant, H. Dang and A. Guidoum, “An Extended Finite Element Library,” International Journal for Numerical Methods in Engineering, Vol. 2, 2006, pp. 1-33.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.