Non-Linear Optical Properties of Substituted Hexatriene: AM1 and ab Initio Quantum Chemical Calculations


We report ab initio studies of the dipole polarizabilities (α) and first static hyperpolarizabilities (β) for a set of substituted hexatriene in which electron donating (D) and electron accepting (A) groups were introduced either end parts of the hexatriene chain NO2-(CH=CH)3-D. Geometries of all molecules were optimized at the Hartree-Fock HF/6-311++G(2d,p) level of theory. Polarizabilities of these molecules were calculated at the same level of theory. To understand this phenomenon in the context of molecular orbital picture, we examined the molecular HOMOs and molecular LUMOs energies. The study revealed that the substituted hexatriene had large β values and hence may have potential applications in the development of non linear optical materials.

Share and Cite:

Labidi, N. (2014) Non-Linear Optical Properties of Substituted Hexatriene: AM1 and ab Initio Quantum Chemical Calculations. Open Access Library Journal, 1, 1-10. doi: 10.4236/oalib.1100420.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Kanis, D.R., Ratner, M.A. and Marks, T. (1994) Design and Construction of Molecularassemblie Nonlinearities. Chemical Reviews, 94, 195.
[2] Prasad, P.N. and Williams, D.J. (1991) Introduction to Nonlinear Optical Effects in Molecules and Polymers. Wiley, New York.
[3] Masraqui, S.H., Kenny, R.S., Ghadigaonkar, S.G., Krishnan, A., Bhattacharya, M. and Das, P.K. (2004) Synthesis and Nonlinear Optical Properties of Some Donor-Acceptor Oxadiazoles. Optical Materials, 27, 257-260.
[4] Sinclair, M., Moses, D., Heeger, A.J., Vilhelmsson, K., Valk, B. and Salour, M. (1987) Measurement of the Third Order Susceptibility of Trans-Polyacetylene by Third Harmonic Generation. Solid State Communications, 61, 221-225.
[5] Chemla, D.S. and Zyss, J. (1987) Nonlinear Optical Properties of Organic Molecules and Crystals. Academic Press, New York.
[6] Williams, D.J. (1985) Nonlinear Optical Properties of Organic and Polymeric Materials. American Chemical Society Symposium Series 233, American Chemical Society, Washington DC.
[7] Rice, J.E. and Handy, N.C. (1991) The Calculation of Frequency-Dependent Polarizabilities as Pseudo-Energy Derivatives. Journal of Chemical Physics, 94, 4959.
[8] Li, H., Han, K., Shen, X., Lu, Z., Huang, Z., Zhang, W., Zhang, Z. and Bai, L. (2006) The First Hyperpolarizabilities of Hemicyanine Cationic Derivatives Studied by Finite-Field (FF) Calculations. Journal of Molecular Structure: THEOCHEM, 767, 113-118.
[9] Labidi, N.S., Djebaili, A. and Rouina, I. (2011) Substitution Effects on the Polarizability (Α) and First Hyperpolarizability (β) of All-Trans Hexatriene. Journal of Saudi Chemical Society, 15, 29-37.
[10] Garcia-Borràs, M., Solà, M., Luis, J.M. and Kirtman, B. (2012) Electronic and Vibrational Nonlinear Optical Properties of Five Representative Electrides. Journal of Chemical Theory and Computation, 8, 2688-2697.
[11] Marder, S.R., Gorman, C.B., Meyers, F., Perry, J.W., Bourhill, G., Bredas, J.L. and Pierce, B.M. (1994) A Unified Description of Linear and Nonlinear Polarization in Organic Polymethine Dyes. Science, 265, 632-635.
[12] Meyers, F., Mader, S.R., Pierce, B.M. and Bredas, J.L. (1994) Electric Field Modulated Nonlinear Optical Properties of Donor-Acceptor Polyenes: Sum-over-States Investigation of the Relationship between Molecular Polarizabilities (α, β, and γ) and Bond Length Alternation. Journal of the American Chemical Society, 116, 10703-10714.
[13] Hayashi, S., Yabushita, S. and Imamura, A. (1991) Ab Initio Calculations of Linear and Nonlinear Polarizabilities in the Side-Chain Direction on the Conjugated Polymers. Chemical Physics Letters, 179, 405-409.
[14] Margulis, V.A. and Gaiduk, E.A. (1998) The Effect of Side Chain Substituents on Third-Order Optical Nonlinearity of Conjugated Polymers: A Theoretical Study. Synthetic Metals, 97, 175-190.
[15] Oliveira, L.N., Amaral, O.A.V., Castro, M.A. and Fonseca, T.L. (2003) Static Polarizabilities of Doubly Charged Polyacetylene Oligomers: Basis Set and Electron Correlation Effects. Chemical Physics, 289, 221-230.
[16] Champagne, B., Spassova, M., Jadin, J.B. and Kirtman, B. (2002) Ab Initio Investigation of Doping-Enhanced Electronic and Vibrational Second Hyperpolarizability of Polyacetylene Chains. Journal of Chemical Physics, 116, 3935.
[17] Fonseca, T.L., Castro, M.A., Cunha, C. and Amaral, O.A.V. (2001) Ab Initio Polarizabilities Calculations of Singly Charged Polyacetylene Oligomers. Synthetic Metals, 123, 11-15.
[18] An, Z. and Wong, K.Y. (2001) Long Chain-Length Behaviors of Optical Nonlinearities of Substituted Polyenic Chains with Charged Topological Defects. Journal of Chemical Physics, 114, 1010.
[19] Champagne, B., Deumens, E. and Ohrn, Y. (1997) Vibrations and Soliton Dynamics of Positively Charged Polyacetylene Chains. Journal of Chemical Physics, 107, 5433.
[20] de Melo, C.P. and Fonseca, T.L. (1996) Ab Initio Polarizabilities of Polyenic Chains with Conformational Defects. Chemical Physics Letters, 261, 28-34.
[21] Zhu, W.H., Wu, G.S. and Jiang, Y.S. (2002) Substitution Effects on the Molecular Structures and the Longitudinal Molecular Polarizabilities of All-Trans Polyacetylene Oligomers of Increasing Size. International Journal of Quantum Chemistry, 86, 390-400.
[22] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Farkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (1998) Gaussian Inc., Pittsburgh.
[23] Stewart, J.J.P. (1999) MOPAC 2002. Fujitsu Limited, Tokyo.
[24] Sadlej, A.J. (1988) Medium-Size Polarized Basis Sets for High-Level Correlated Calculations of Molecular Electric Properties. Collection of Czechoslovak Chemical Communications, 53, 1995.
[25] Hurst, G.J.B., Dupuis, M. and Clementi, E. (1988) Ab Initio Analytic Polarizability, First and Second Hyperpolarizabilities of Large Conjugated Organic Molecules: Applications to Polyenes C4H6 to C22H24. Journal of Chemical Physics, 89, 385.
[26] Weast, C.R. (1985-86) CRC Hand Book of Chemistry and Physics. 66th Edition, CRC Press, Boca Raton.
[27] Sophy, K.B., Calaminici, P. and Pal, S. (2007) Density Functional Static Dipole Polarizability and First-Hyperpolarizability Calculations of Nan (n = 2, 4, 6, 8) Clusters Using an Approximate CPKS Method and Its Comparison with MP2 Calculations. Journal of Chemical Theory and Computation, 3, 716-727.
[28] Tillekeratne, A.D., de Silva, R.M. and Nalin de Silva, K.M. (2003) Push-Pull Porphyrins as Non-Linear Optical Materials: Ab Initio Quantum Chemical Calculations. Journal of Molecular Structure: THEOCHEM, 638, 169-176.
[29] Liyanage, P.S., de Silva, R.M. and Nalin de Silva, K.M. (2003) Nonlinear Optical (NLO) Properties of Novel Organometallic Complexes: High Accuracy Density Functional Theory (DFT) Calculations. Journal of Molecular Structure: THEOCHEM, 639, 195-201.
[30] Wu, K.C., Snijders, J.G. and Lin, C.S. (2002) Reinvestigation of Hydrogen Bond Effects on the Polarizability and Hyperpolarizability of Urea Molecular Clusters. Journal of Physical Chemistry B, 106, 8954-8958.
[31] Chang, L.T., Tam, W., Stevensen, S.H., Meredith, G.R., Rikken, G. and Marder, S.R. (1991) Experimental Investigations of Organic Molecular Nonlinear Optical Polarizabilities. 1. Methods and Results on Benzene and Stilbene Derivatives. Journal of Physical Chemistry, 95, 10631-10643.
[32] Thanthiriwatte, K.S. and Nalin de Silva, K.M. (2002) Non-Linear Optical Properties of Novel Fluorenyl Derivatives— Ab Initio Quantum Chemical Calculations. Journal of Molecular Structure: THEOCHEM, 617, 169-175.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.