A New Algorithm for the Determinant and the Inverse of Banded Matrices


In the current article, the authors present a new recurrence formula for the determinant of a banded matrix. An algorithm for inverting general banded matrices is derived.

Share and Cite:

Elouafi, M. and Ahmed, D. (2014) A New Algorithm for the Determinant and the Inverse of Banded Matrices. Open Access Library Journal, 1, 1-5. doi: 10.4236/oalib.1100543.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Aiat Hadj, D. and Elouafi, M. (2008) A Fast Numerical Algorithm for the Inverse of a Tridiagonal and Pentadiagonal Matrix. Applied Mathematics and Computation, 202, 441-445.
[2] Gravvanis, G.A. (2003) On the Solution of Boundary Value Problems by Using Fast Generalized Approximate Inverse Banded Matrix Techniques. The Journal of Supercomputing, 25, 119-129.
[3] Ran, R.S. and Huang, T.Z. (2009) An Inversion Algorithm for a Banded Matrix. Computers and Mathematics with Applications, 58, 1699-1710.
[4] Trench, W.F. (1974) Inversion of Toeplitz Band Matrices. Mathematics of Computation, 28, 1089-1095.
[5] Kratz, W. (2001) Banded Matrices and Difference Equations. Linear Algebra and its Applications, 337, 1-20.
[6] Aiat Hadj, A.D. and Elouafi, M. (2008) On the Characteristic Polynomial, Eigenvectors and Determinant of a Pentadiagonal Matrix. Applied Mathematics and Computation, 198, 634-642.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.