Formation of TiO2 Nanopores by Anodization of Ti-Films

DOI: 10.4236/oalib.1100630   PDF        1,416 Downloads   1,894 Views   Citations


Titania nanopores were fabricated on silicon substrate. Ti thin films (600 nm) were first deposited by radio-frequency (RF) magnetron sputtering at two substrate temperatures and then anodized in glycerol electrolytes containing NH4F. The morphology and structure were identified by means of scanning electron microscopy (SEM), X-ray diffractometry (XRD). The effect of the temperature on the Ti thin films deposited by RF magnetron sputtering and the applied voltage on nanopore morphology were investigated. Homogeneously distributed nanopores with dimensions in the range of 60 to 80 nm were obtained independently of the voltage applied during the anodization and the substrate temperature in sputtering deposition.

Share and Cite:

Perillo, P. and Rodríguez, D. (2014) Formation of TiO2 Nanopores by Anodization of Ti-Films. Open Access Library Journal, 1, 1-9. doi: 10.4236/oalib.1100630.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Mor, G.K., Carvalho, M.A., Varghese, O.K., Pishko, M.V. and Grimes C.A. (2004) A Room Temperature TiO2 Nanotube Hydrogen Sensor Able to Self-Clean Photoactively from Environmental Contamination. Journal of Materials Research, 19, 628-634.
[2] Varghese, O.K, Mor, G.K., Grimes, C.A., Paulose, M. and Mukherjee, N. (2004) A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations. Journal of Nanoscience and Nanotechnology, 4, 733-737.
[3] Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A. and Ong, K.G. (2006) Unprecedented Ultra-High Hydrogen Gas Sensitivity in Undoped Titania Nanotubes. Nanotechnology, 17, 398-402.
[4] Varghese, O.K., Yang, X., Kendig, J., Paulose, M., Zeng, K., Palmer, C., Ong, K.G. and Grimes, C.A. (2006) A Transcutaneous Hydrogen Sensor: From Design to Application. Sensor Letters, 4, 120-128.
[5] Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C. and Grimes, C.A. (2003) Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure. Advanced Materials, 15, 624-627.
[6] Sxennik, E., Colak, Z., K1l1nc, N. and Ziya Oüzturk, Z. (2010) Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor. International Journal of Hydrogen Energy, 35, 4420-4427.
[7] Wang, Q., Pan, Y.Z., Huang, S.S., Ren, S.T., Li, P. and Li, J.J. (2011) Resistive and Capacitive Response of Nitrogen-Doped TiO2 Nanotubes Film Humidity Sensor. Nanotechnology, 22, Article ID: 025501.
[8] Shankar, K., Mor, G.K., Prakasam, H.E., Yoriya, S., Paulose, M., Varghese, O.K. and Grimes, C.A. (2007) Highly-Ordered TiO2 Nanotube Arrays up to 220 μm in Length: Use in Water Photoelectrolysis and Dye-Sensitized Solar Cells. Nanotechnology, 18, Article ID: 065707.
[9] Macák, J.M, Tsuchiya, H., Ghicov, A. and Schmuki, P. (2005) Dye-Sensitized Anodic TiO2 Nanotubes. Electrochemistry Communications, 7, 1133-1137.
[10] Adachi, M., Murata, Y., Okada, I. and Yoshikawa, Y. (2003) Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells. Journal of the Electrochemical Society, 150, G488-G493.
[11] Mohapatra, S.K., Misra, M., Mahajan, V.K. and Raja, K.S. (2007) Design of a Highly Efficient Photoelectrolytic Cell for Hydrogen Generation by Water Splitting: Application of TiO2-C Nanotubes as a Photoanode and Pt/TiO2 Nanotubes as a Cathode. Journal of Physical Chemistry C, 111, 8677-8685.
[12] Varghese, O.K., Paulose, M. and LaTempa, T.J. (2009) High-Rate Solar Photocatalytic Conversion of CO2 and Water Vapor to Hydrocarbon Fuel. Nano Letters, 9, 731-737.
[13] Wang, Y.G., Wang, Z.D. and Xia, Y.Y. (2005) An Asymmetric Supercapacitor Using RuO2/TiO2 Nanotube Composite and Activated Carbon Electrodes. Electrochimica Acta, 50, 5641-5646.
[14] Wang, Q., Wen, Z.H. and Li, J.H. (2007) Carbon Nanotubes/TiO2 Nanotubes Hybrid Supercapacitor. Journal of Nanoscience and Nanotechnology, 7, 3328-3331.
[15] Oh, S., Daraio, C., Chen, L.-H., Pisanic, T.R., Fiñones, R.R. and Jin, S. (2006) Significantly Accelerated Osteoblast Cell Growth on Aligned TiO2 Nanotubes. Journal of Biomedical Materials Research Part A, 78A, 97-103.
[16] Popat, K.C., Eltgroth, M., La Tempa, T.J., Grimes, C.A. and Desai, T.A. (2007) Decreased Staphylococcus epidermis Adhesion and Increased Osteoblast Functionality on Antibiotic-Loaded Titania Nanotubes. Biomaterials, 28, 4880-4888.
[17] Roy, S.C., Paulose, M. and Grimes, C.A. (2007) The Effect of TiO2 Nanotubes in the Enhancement of Blood Clotting for the Control of Hemorrhage. Biomaterials, 28, 4667-4672.
[18] Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K. and Grimes, C.A. (2006) Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells. Nano Letters, 6, 215-218.
[19] Paulose, M., Shankar, K., Varghese, O.K., Mor, G.K. and Grimes, C.A. (2006) Application of Highly-Ordered TiO2 Nanotube-Arrays in Heterojunction Dye-Sensitized Solar Cells. Journal of Physics D: Applied Physics, 39, 2498-2503.
[20] Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005) Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films. Advanced Functional Materials, 15, 1291-1296.
[21] Leenheer, A.J., Miedaner, A., Curtis, C.J., Van Hest, M.F.A.M. and Ginley, D.S. (2007) Fabrication of Nanoporous Titania on Glass and Transparent Conducting Oxide Substrates by Anodization of Titanium Films. Journal of Materials Research, 22, 681-687.
[22] Chu, S.Z., Inoue, S., Wada, K., Hishita, S. and Kurashima, K. (2005) Self-Organized Nanoporous Anodic Titania Films and Ordered Titania Nanodots/Nanorods on Glass. Advanced Functional Materials, 15, 1343-1349.
[23] Sadek, A.Z., Zheng, H., Latham, K., Wlodarski, W. and Kalantar-zadeh, K. (2009) Anodization of Ti Thin Film Deposited on ITO. Langmuir, 25, 509-514.
[24] Yu, X.F., Lu, Y.X., Wlodarski, W., Kandasamy, S. and Kalantar-zadeh, K. (2008) Fabrication of Nanostructured TiO2 by Anodization: A Comparison between Electrolytes and Substrates. Sensors and Actuators B, 130, 25-31.
[25] Macák, J.M., Tsuchiya, H., Berger, S., Bauer, S., Fujimoto, S. and Schmuki, P. (2006) On Wafer TiO2 Nanotube-Layer Formation by Anodization of Ti-Films on Si. Chemical Physics Letters, 428, 421-425.
[26] Premchand, Y.D., Djenizian, T., Vacandio, F. and Knauth, P. (2006) Fabrication of Self-Organized TiO2 Nanotubes from Columnar Titanium Thin Films Sputtered on Semiconductor Surfaces. Electrochemistry Communications, 8, 1840-1844.
[27] Yu, X.F., Li, Y.X., Ge, W., Yang, Q., Zhu, N.F. and Kalantar-zadeh, K. (2006) Formation of Nanoporous Titanium Oxide Films on Silicon Substrates Using an Anodization Process. Nanotechnology, 17, 808-814.
[28] Patermarakis, G. and Moussoutzanis, K. (1995) Mathematical Models for the Anodization Conditions and Structural Features of Porous Anodic Al2O3 Films on Aluminum. Journal of the Electrochemical Society, 142, 737-743.
[29] Lackner, J.M., Waldhauser, W., Alamanou, A., Teichert, C., Schmied, F., Major, L. and Major, B. (2010) Mechanisms for Self-Assembling Topography Formation in Low-Temperature Vacuum Deposition of Inorganic Coatings on Polymer Surfaces. Bulletin of the Polish Academy of Sciences, 58, 281-294.
[30] Mor, G.K., Varghese, O.K., Paulose, M. and Grimes, C.A. (2005) Transparent Highly Ordered TiO2 Nanotube Arrays via Anodization of Titanium Thin Films. Advanced Functional Materials, 15, 1291-1296.
[31] Kalantar-zadeh, K., Sadek, A.Z., Zheng, H., Partridge, J.G., McCulloch, D.G., Li, Y.X., Yu, X.F. and Wlodarski, W. (2009) Effect of Crystallographic Orientation on the Anodic Formation of Nanoscale Pores/Tubes in TiO2 Films. Applied Surface Science, 256, 120-123.
[32] Chawla, V., Jayaganthan, R., Chawla, A.K. and Chandra, R. (2009) Microstructural Characterizations of Magnetron Sputtered Ti Films on Glass Substrate. Journal of Materials Processing Technology, 209, 3444-3451.
[33] Jeyachandran, Y.L., Karunagaran, B., Narayandass, S.K., Mangalaraj, D., Jenkins, T.E. and Martin, P.J. (2006) Properties of Titanium Thin Films Deposited by dc Magnetron Sputtering. Materials Science and Engineering: A, 431, 277-284.
[34] Oya, T. and Kusano, E. (2009) Effects of Radio-Frequency Plasma on Structure and Properties in Ti Film Deposition by dc and Pulsed dc Magnetron Sputtering. Thin Solid Films, 517, 5837-5843.
[35] Chawla, V., Jayaganthan, R. and Chandra, R. (2008) Finite Element Analysis of Thermal Stress in Magnetron Sputtered Ti Coating. Journal of Materials Processing Technology, 200, 205-211.
[36] Singh, P. and Kaur, D. (2008) Influence of Film Thickness on Texture and Electrical Properties of Room Temperature Deposited Nanocrystalline V2O5 Thin Films. Journal of Applied Physics, 103, Article ID: 043507.
[37] Kalantar-zadeh, K., Sadek, A.Z., Partridge, J.G., McCulloch, D.G., Li, Y.X., Yu, X.F., Spizirri, P.G. and Wlodarski, W. (2009) Nanoporous Titanium Oxide Synthesized from Anodized Filtered Cathodic Vaccuum Arc Ti Thin Films. Thin Solid Films, 518, 1180-1184.
[38] Kowalski, D., Kim, D. and Schmuki, P. (2013) TiO2 Nanotubes, Nanochannels and Mesosponge: Self-Organized Formation and Applications. Nano Today, 8, 235-264.
[39] Macák, J.M., Aldabergerova, S., Ghicov, A. and Schmuki, P. (2006) Smooth Anodic TiO2 Nanotubes: Annealing and Structure. Physica Status Solidi (a), 203, 67-69.
[40] Regonini, D., Jaroenworaluck, A., Stevens, R. and Bowen, C.R. (2010) Effect of Heat Treatment on the Properties and Structure of TiO2 Nanotubes: Phase Composition and Chemical Composition. Surface and Interface Analysis, 42, 139-144.
[41] Ben Amor, S., Guedri, L., Baud, G., Jacquet, M. and Ghedira, M. (2002) Influence of the Temperature on the Properties of Sputtered Titanium Oxide Films. Materials Chemistry and Physics, 77, 903-911.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.