Share This Article:

Theoretical and Numerical Analysis of the Mechanical Erosion in Steam Turbine Blades. Part I

Abstract Full-Text HTML Download Download as PDF (Size:1123KB) PP. 227-237
DOI: 10.4236/epe.2011.33029    6,881 Downloads   12,199 Views   Citations

ABSTRACT

The methodology of calculation of the velocity distribution for the stream frictionless and the drops in the flow line, on the basis of the frictionless, two-dimensional, stationary, transonic and homogenous flow is established. The knowledge of conditions that govern the low pressure section of steam turbines in the last stage to have an approximate movement of the droplets in the blade cascades and the accumulation of droplets on the stator blades, flowing through the steam, is presented. This study is used for developing a code in Fortran about the velocity distribution in the output of stator blades that have flow conditions of wet steam, in order to understand the causes that originate the erosion on the blades of the last stages in the low pressure section of steam turbines.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

F. Martínez, M. Velázquez, A. Martínez, F. Silva, S. Montes and O. Chávez, "Theoretical and Numerical Analysis of the Mechanical Erosion in Steam Turbine Blades. Part I," Energy and Power Engineering, Vol. 3 No. 3, 2011, pp. 227-237. doi: 10.4236/epe.2011.33029.

References

[1] M. F. Rueda, V. M. Toledo, S. F. Sánchez, H. J. A. Ortega and M. A. A. Rueda, “Humidity Distribution in a Two Dimensional Stator Blade Cascade of Steam Turbine,” 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Antalya, 2010.
[2] D. Braukmann, Institut für Thermodynamic der Luft und Raumfahrt, uni-sttutgart.de.
[3] A. E. Zaryankin, V. A. Zaryankin and B. P. Simonov, “Several Ways of Improving the Efficiency of the Flow Paths of the Steam Turbines,” Thermal Engineering, Vol. 50, No. 6, 2003, pp. 442-448.
[4] M. F. Rueda, V. M. Toledo, S. F. Sánchez and M. A. A. Rueda, “Calculation of Drops Distribution in Steam Turbine Blades,” 5th European Conference of Economics and Management of Energy in Industry, Algarve, 2009.
[5] I. J. Ford, “Thermodynamic Properties of Critical Clusters from Measurements of Vapour-Liquid Homogeneous Nucleation Rates,” The Journal of Chemical Physics, Vol. 105, No. 18, 1996, pp. 8324-8332. doi:10.1063/1.472687
[6] J. L. Katz, J. A. Fisk and M. M. Rudek, “Nucleation of Single Component Supersaturated Vapors,” Nucleation and Atmospheric Aerosols 1996: Proceedings of the 14th International Conference on Nucleation and Atmospheric Aerosols, Helsinki, 26-30 August 1996, pp. 1-10.
[7] P. P. Wegner and J.-Y. Parlange, “Condensation by Homogeneous Nucleation in the Vapor Phase,” Naturwissenschaften, Vol. 57, No. 11, 1970, pp. 525-533. doi:10.1007/BF00625319
[8] A. Hanna, “Kinetic Effect of Cluster-Cluster Processes on Homogeneous Nucleation Rates in One- and Two-Component Systems,” The Journal of Chemical Physics, Vol. 107, No. 8, 1997, pp. 3196-3203. doi:10.1063/1.474669
[9] E. E. Michaelides, “Particles, Bubbles and Drops, Their Motion, Heat and Mass Transfer,” World Scientific Publishing, Singapore, 2006.
[10] J. W. P. Schmelzer, “Nucleation Theory and Application,” Wiley, Hoboken, 2005, pp. 40. doi:10.1002/3527604790
[11] D. W. Oxtoby, “Nucleation of First-Order Phase Transitions,” Accounts of Chemical Research, Vol. 31, No. 2, 1998, pp. 91-97. doi:10.1021/ar9702278
[12] V. M. Toledo and W. Riess, “Vorlessung Dampf- turbinen,” Institut fuer Stroemungsmaschinen, Universitaet Hannover, Germany, 2008.
[13] Katz J. L.; “Homogeneous Nucleation Theory and Experiment: A Survey,” Pure and Applied Chemistry, Vol. 64, No. 11, 1992, pp. 1661-1666. doi:10.1351/pac199264111661
[14] K. K. Haller, “High-Velocity Impact of a Liquid Droplet on a Rigid Surface: The Effect of Liquid Compressibility,” Thesis, Swiss Federal Institute of Technology Zurich, Zurich, 2002.
[15] P. B. Heinz, “Guía Práctica para la Tecnología de las Turbinas de Vapor,” McGraw Hill, New York, 1996.
[16] S. Yamamoto, “Computation of Practical Flow Problems with Release of Latent Heat,” Elsevier, Amsterdam, 2004.
[17] M. F. Rueda, V. M. Toledo, L. G. Jarquín, S. F. Sánchez and G. Polupan, “Erosion Study of a Rotor Blade from a Steam Turbine,” 6th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Pretoria, 2008.
[18] M. F. Rueda, V. M. Toledo, M. I. Carvajal, F. J. Abugaber and E. G. Tolentino, “Estudio Teórico de la Erosión Mecánica en un álabe Rotor del último Paso de la Sección de Baja Presión de una Turbina de Vapor de 300 MW,” Científica Journal, Vol. 11, No. 3, 2007.
[19] J. C. Bellows, “Chemistry in the Moisture Transition Region of the Steam Turbine,” Journal of Solution Chemistry, Vol. 32, No. 10; 14th International Conference on the Properties of Water and Steam; Springer Netherlands; Kyoto; 2003.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.