A quantum-chemical model of the inhibition mechanismof viral DNA HIV-1 replication by Iodine complexcompounds
Gulnara A. Yuldasheva, Georgii M. Zhidomirov, Aleksandr I. Ilin
DOI: 10.4236/ns.2011.37080   PDF   HTML     4,189 Downloads   7,991 Views   Citations


The interaction of molecular iodine with virus DNA nucleotide is studied by ab initio RHF/3-21G** method. Formation of the nucleoprotein complex of the HIV DNA, molecular iodine and the HIV-1 integrase co-factor is considered to cause the inhibition action of the integrase enzyme. Experimental data on the anti-HIV effect of the molecular iodine complex compounds and the results of calculations suggest that molecular iodine contained in iodine polymer complexes may be considered as a compound inhibiting the catalytic center of the integrase enzyme. Unlike the known integrase inhibitors, molecular iodine also changes the virus DNA structure and produces the N-I bond in the purine bases of adenosine and guanosine nucleotides.

Share and Cite:

Yuldasheva, G. , Zhidomirov, G. and Ilin, A. (2011) A quantum-chemical model of the inhibition mechanismof viral DNA HIV-1 replication by Iodine complexcompounds. Natural Science, 3, 573-579. doi: 10.4236/ns.2011.37080.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Delelis, O., Carayon, K., Sa?b, A., Deprez, E. and Mouscadet, J.F. (2008) Integrase and integration: Biochemical activities of HIV-1 integrase. Retrovirology, 17, 5-114.
[2] Long, M.C., King, J.R. and Acosta, E.P. (2009) Pharmacologic aspects of new antiretroviral drugs. Current HIV/AIDS Reports, 6, 43-50. doi:10.1007/s11904-009-0007-y
[3] Emmelkamp, J.M. and Rockstroh, J.K. (2008) Maraviroc risks and benefits: A review of the clinical literature. Expert Opinion on Drug Safety, 7, 559-569. doi:10.1517/14740338.7.5.559
[4] Borrás-Blasco, J., Navarro-Ruiz, A., Borrás, C. and Casterá E. (2008) Adverse cutaneous reactions associated with the newest antiretroviral drugs in patients with human immunodeficiency virus infection. Journal of Antimicrobial Chemotherapy, 62, 879-888. doi:10.1093/jac/dkn292
[5] Sen, S., Mathur, A.G., Gupta, R.M., Kapila, K. and Chopra, G.S. (2008) Investigational antiretroviral drugs. Recent Patents on Anti-Infective Drug Discovery, 3, 199- 205. doi:10.2174/157489108786242387
[6] Ciuffi, A. (2008) Mechanisms governing lentivirus integration site selection. Current Gene Therapy, 8, 419-429. doi:10.2174/156652308786848021
[7] Farnet, C.M. and Haseltine, W.A. (1990) Integration of human immunodeficiency virus type 1 DNA in vitro. Proceedings of the National Academy of Sciences, 87, 4164-4168. doi:10.1073/pnas.87.11.4164
[8] Podtelezhnikov, A.A., Gao, K., Bushman, F.D. and Mc- Cammon, J.A. (2003) Modeling HIV-1 integrase complexes based on their hydrodynamic properties. Biopolymers, 68, 110-120. doi:10.1002/bip.10217
[9] Dyda, F., Hickman, A.B., Jenkins, T.M., Engelman, A., Craigie, R. and Davies, D.R. (1994) Crystal structure of catalytic domain of HIV-1 integrase? Similarity to other polynucleotidyl transferases. Science, 266, 1981-1986. doi:10.1126/science.7801124
[10] Goldgur, Y., Dyda, F., Hickman, A.B., Jenkins, T.M., Craigie, R. and Davies, D.R. (1998) Three new structures of the core domain of HIV-1 integrase: An active site that binds magnesium. Proceedings of the National Academy of Sciences, 95, 9150-9154. doi:10.1073/pnas.95.16.9150
[11] Sawaya, M.R., Prasad, R., Wilson, S.H., Kraut, J. and Pelletier, H. (1997) Crystal structures of human DNA polymerase beta complexed with gapped and nicked DN- A? Evidence for an induced fit mechanism. Biochemistry, 36, 11205-11215. doi:10.1021/bi9703812
[12] Chen, X., Tsiang, M., Yu, F., Hung, M., Jones, G.S., Zeynalzadegan, A., Qi, X., Jin, H., Kim, C.U., Swaminathan, S. and Chen, J.M. (2008) Modeling, analysis and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. Journal of Molecular Biology, 380, 504-519. doi:10.1016/j.jmb.2008.04.054
[13] Farnet, C.M., Wang, B., Lipford, J.R. and Bushman, F.D. (1996) Differential inhibition of HIV-1 preintegration complexes and purified integrase protein by small molecules. eedings of the National Academy of Sciences, 93, 9742-9747. doi:10.1073/pnas.93.18.9742
[14] Patent Pub.No. WO/2001/078751 International Application No.: PCT/AM2000/000002, International Filling Date 24.11.2000.
[15] Shikani, A.H., St Clair, M. and Domb A. (1996) Polymer-iodine inactivation of the human immunodeficiency virus. Journal of the American College of Surgeons, 183, 195-200
[16] Patent KZ (A) №15116, 15.12.2004, bull 12.
[17] Davtyan, T.K., Mkhitaryan, L.M. and Gabrielyan, E.S. (2009) Desing of iodine-lithium-?-dextrin liguid crystal with potent antimicrobaial and anti-inflammatory properties. Current Pharmaceutical Design, 15, 1172-1186. doi:10.2174/138161209787846829
[18] Mkhitaryan, L.M., Davtyan, T.K., Gabrielyan, E.S. and Gevorkyan, L.A. (2007) Anti-HIV and anti-inflammatory action of iodine-lithium-α-dextrin is accompanied by the improved quality of life in AIDS patients. International Journal of Biotechnology, 9, 301-317. doi:10.1504/IJBT.2007.014252
[19] Krishna, V.G. and Bhowmik, B.B. (1968) Charge-tran- sfer intensities of iodine complexes with N-heterocyclics. Journal of the American Chemical Society, 90, 1700- 1705. doi:10.1021/ja01009a004
[20] McKinney, W.J. and Popov, A.I. (1969) Studies on the chemistry of halogen and of polyhalides. XXX. The influence of solvent properties on formation of pyridine- -iodine charge-transfer complexes. Journal of the American Chemical Society, 91, 5215-5218. doi:10.1021/ja01047a005
[21] Hassel, O., Romming, C. and Tufte, T. (1961) Crystal structure of the 1?1 addition compound formed by 4-picoline and iodine. Acta Chemica Scandinavica, 15, 967-974. doi:10.3891/acta.chem.scand.15-0967
[22] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalize gradient approximation made simple. Physical Review Letters, 77, 3865-3868. doi:10.1103/PhysRevLett.77.3865
[23] Tretyakov, U.D. (2004) Inorganic chemistry ?in Russian?. Academia, Moscow.
[24] Sun, Z., Ma, Z., Zhang, W., Wang, X., Fan, C. and Li, G. (2004) Electrochemical investigations of baicalin and DNA-baicalin interactions. Analytical and Bioanalytical Chemistry, 379, 283-286. doi:10.1007/s00216-004-2542-0
[25] Reha, D., Kabelac, M., Ryjacek, F., Sponer J., Sponer, J.E., Elstner, M., Suhai, S. and Hobza, P. (2002) Intercalators. 1. Nature of stacking interaction between intercalators (ethidium, daunomycin, ellipticine and 4/,6-dia- minide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory and empirical potential study. Journal of the American Chemical Society, 124, 3366-3376. doi:10.1021/ja011490d
[26] Globler, J.A., Stillmock, K., Hu, B., Witmer, M., Felock, P., Espeseth, A.S., Wolfe, A., Egbertson, M., Bourgeois, M., Melamed, J., Wai, J.S., Young, S., Vacca, J. and Hazuda, D.J. (2002) Diketo acid inhibitor mechanism and HIV-1 integrase? Implications for metal binding in the active site of phosphotransferase enzymes. Proceedings of the National Academy of Sciences, 99, 6661-6666. doi:10.1073/pnas.092056199

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.