Characterization and Classification of Groundwater from Wells Using an Electronic Tongue (Kairouan, Tunisia)


A sensor array comprising 9 potentiometric chemical sensors and some pattern recognition tools for the data processing has been applied in order to characterize the groundwater in the plain of Kairouan Region (Tunisia). A total of 17 groundwater samples were collected from three different villages and analyzed for their chemical components. Nine chemical parameters were determined: Potassium, Sodium, Calcium, Ammonium, Cadmium, Chlorides, Nitrates, Fluoride and pH. Multi-sensor responses measured in each water sample were diagnosed by Principal Component Analysis (PCA) and Cluster Analysis (CA). PCA is a procedure for reducing data redundancy. CA is used to detect spatial similarity among sampling sites. This methodology is simple, rapid and the obtained results demonstrate that the electronic tongue technique based on the sensor array combined with pattern recognition method could be a useful tool for the characterization and the classification of wells water samples.

Share and Cite:

K. Sghaier, H. Barhoumi, A. Maaref, M. Siadat and N. Jaffrezic-Renault, "Characterization and Classification of Groundwater from Wells Using an Electronic Tongue (Kairouan, Tunisia)," Journal of Water Resource and Protection, Vol. 3 No. 7, 2011, pp. 531-539. doi: 10.4236/jwarp.2011.37063.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Felipe-Sotelo, J. M. Andrade, A. Carlosena and R. Tauler, “Temporal Characterisation of River Waters in Urban and Semi-Urban Areas Using Physico-Chemical Parameters and Chemometric Methods,” Analytica Chimica Acta, Vol. 583, No. 1, 2007, pp. 128-137. doi:10.1016/j.aca.2006.10.011
[2] T. G. Kazi, M. B. Arain, M. K. Jamali, N. Jalbani, H. I. Afridi, R. A. Sarfraz, J. A. Baig and A. Q. Shah, “Assessment of Water Quality of Polluted Lake Using Multivariate Statistical Techniques: A Case Study,” Ecotoxicology and Environmental Safety, Vol. 72, No. 2, 2009, pp. 301-309. doi:10.1016/j.ecoenv.2008.02.024
[3] B. Helena, R. Pardo, M. Vega, E. Barrado, J. M. Fernan- dez and L. Fernandez, “Temporal Evolution of Groundwater Composition in an Alluvial Aquifer (Pisuerga River, Spain) by Principal Component Analysis,” Water Research, Vol. 34, No. 3, 2000, pp. 807-816. doi:10.1016/S0043-1354(99)00225-0
[4] K. P. Singh, A. Malik, D. Mohan and S. Sinha, “Multi- variate Statistical Techniques for the Evaluation of Spa- tial and Temporal Variations in Water Quality of Gomti River (India): A Case Study,” Water Research, Vol. 38, No. 18, 2004, pp. 3980-3992. doi:10.1016/j.watres.2004.06.011
[5] S. Shrestha and F. Kazama, “Assessment of Surface Wa- ter Quality Using Multivariate Statistical Techniques: A Case Study of the Fuji River Basin, Japan,” Environ- mental Modelling and Software, Vol. 22, No. 4, 2007, pp. 464-475. doi:10.1016/j.envsoft.2006.02.001
[6] P. Barbieri, G. Adamia, A. Favretto, A. Lutmanc, W. Avoscan and E. Reisenhofer, “Robust Cluster Analysis for Detecting Physico-Chemical Typologies of Freshwater from Wells of the Plain of Friuli (Northeastern Italy),” Analytica Chimica Acta, Vol. 440, No. 2, 2001, pp. 161- 170. doi:10.1016/S0003-2670(01)00991-6
[7] V. Simeonov, J. A. Stratis, C. Samara, G. Zachariadis, D. Voutsa, A. Anthemidis, M. Sofoniou and T. Kouimtzis, “Assessment of the Surface Water Quality in Northern Greece,” Water Research, Vol. 37, No. 17, 2003, pp. 4119-4124. doi:10.1016/S0043-1354(03)00398-1
[8] H. Martens and T. Naes, “Multivariate Calibration,” Wiley, Chichester, 1989.
[9] D. Massart, B. Vandeginste, L. Buydens, S. De Jong, P. Lewi and J. Smeyers-Verbeke, “Handbook of Chemometrics and Qualimetrics,” Elsevier, Amsterdam, 1998.
[10] R. G. Brereton, “Chemometrics: Data Analysis for the Laboratory and Chemical Plant,” Wiley, Chichester, 2003.
[11] T. Kowalkowski, R. Zbytniewski, J. Szpejna and B. Buszewski, “Application of Chemometrics in River Water Classification,” Water Research, Vol. 40, No. 4, 2006, pp. 744-752. doi:10.1016/j.watres.2005.11.042
[12] R. A. Johnson and D. W. Wichern, “Applied Multivariate Statistical Analysis,” Prentice Hall, Englewood Cliffs, 1992.
[13] C. Sarbu and H. F. Pop, “Principal Component Analysis Versus Fuzzy Principal = Component Analysis. A Case Study: The Quality of Danube water (1985-1996),” Talanta, Vol. 65, No. 5, 2005, pp. 1215-1220. doi:10.1016/j.talanta.2004.08.047
[14] J. E. McKenna Jr, “An Enhanced Cluster Analysis Program with Bootstrap Significance Testing for Ecological Community Analysis,” Environmental Modelling Software, Vol. 18, No. 3, 2003, pp. 205-220. doi:10.1016/S1364-8152(02)00094-4
[15] M. Otto, “Multivariate Methods,” In: R. Kellner, J. M. Mermet, M. Otto and H. M Widmer, Eds., Analytical Chemistry, Wiley VCH, Weinheim, 1998, p. 916.
[16] M. Vega, R. Pardo, E. Barrado and L. Deban, “Assessment of Seasonal and Polluting Effects on the Quality of River Water by Exploratory Data Analysis,” Water Research, Vol. 32, No. 12, 1998, pp. 3581-3592. doi:10.1016/S0043-1354(98)00138-9
[17] S. Adams, R. Titus, K. Pietesen, G. Tredoux and C. Harris, “Hydrochemical Characteristic of Aquifers near Sutherland in the Western Karoo, South Africa,” Journal of Hydrology, Vol. 241, No. 1-2, 2001, pp. 91-103. doi:10.1016/S0022-1694(00)00370-X
[18] D. A. Wunderlin, M. P. Diaz, M. V. Ame, S. F. Pesce, A. C. Hued and M. A. Bistoni, “Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study: Suquia River Basin (Cordoba, Argentina),” Water Research, Vol. 35, No. 12, 2001, pp. 2881-2894. doi:10.1016/S0043-1354(00)00592-3
[19] R. Reghunath, T. R. J. Murthy and B. R. Raghavan, “The Utility of Multivariate Statistical Techniques in Hydrogeochemical Studies: An Example from Karnataka, India,” Water Research, Vol. 36, No. 10, 2002, pp. 2437- 2442. doi:10.1016/S0043-1354(01)00490-0
[20] WHO, “Guidelines for Drinking-Water Quality,” 3rd Edition, WHO, Geneva, 2004.
[21] A. Versari, G. P. Parpinello and S. Galassi, “Chemo- metric Survey of Italian Bottled Mineral Waters by Means of Their Labelled Physicochemical and Chemical Compo- sition,” Journal of Food Composition and Analysis, Vol. 15, No. 3, 2002, pp. 251-264. doi:10.1006/jfca.2002.1058
[22] M.F. McCarthy, “Should We Restrict Chloride Rather than Sodium,” Medical Hypotheses, Vol. 63, No. 1, 2004, pp. 138-148. doi:10.1016/j.mehy.2003.11.005
[23] J. A. Entry and N. Farmer, “Ground Water Quality: Movement of Coliform Bacteria and Nutrients in Ground- water Flowing Through Basalt and Sand Aquifers,” Jour- nal of Environmental Quality, Vol. 30, No. 5, 2001, pp. 1533-1539.
[24] A. Ikem, S. Odueyungbo, N. O. Egiebor and K. Nyavor “Chemical Quality of Bottled Waters from Three Cities in Eastern Alabama,” The Science of the Total Environment, Vol. 285, No. 1-3, 2002, pp. 165-175. doi:10.1016/S0048-9697(01)00915-9
[25] M. A, Saleh, E. Ewane, J. Jones and B. L. Wilson, “Che- mical Evaluation of Commercial Bottled Drinking Water from Egypt,” Journal of Food Composition and Analysis, Vol. 14, No. 2, 2001, pp. 127-152. doi:10.1006/jfca.2000.0858
[26] B. Jansson, “Potassium, Sodium, and Cancer: A Review,” Journal of Environmental Pathology, Toxicology and On- cology, Vol. 15, No. 2-4, 1996, pp. 65-73.
[27] C. Y. Yang, H. F. Chiu, J. F. Chiu, S. S. Tsai and M. F. Cheng, “Calcium and Magnesium in Drinking Water and Risk of Death from Colon Cancer,” Japanese Journal of Cancer Research, Vol. 88, No. 10, 1997, pp. 928-933.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.