Simulaccion Processes of a Mathematical Model to Determine the Growth of Tomato under Plastic Cover


The tomato is one of the horticultural crops of the greatest economic value; for this reason, flexibility of management is usable. The population density in a crop of vegetables is determined by the distance between the plants and so it is necessary to choose the number of plants per square meter since the saturation of plants will lead to competition between sunlight, nutrients and weed. The objective of this work is to make the appropriate investigation for the use of the model proposed in order to describe the growth of tomato in greenhouse to high density of two plants per container to two bunches per plant, resulting in eight plants per square meter to grow, by means of a simulator of growth by computer. Of this work, it is concluded that it is possible to use the model to describe the growth of plants, and in the near future it will be possible to develop a simulator by computer of the growth of these crops in order to improve their quality and increase their production.

Share and Cite:

Marín Vaca, L. , Domínguez Patiño, M. , Lara Ruiz, N. and Aguilar Cortes, M. (2015) Simulaccion Processes of a Mathematical Model to Determine the Growth of Tomato under Plastic Cover. Agricultural Sciences, 6, 1532-1537. doi: 10.4236/as.2015.612146.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] INEGI. Sistema de Cuentas Nacionales, varios años (1995-2010).
[2] Ortega Hernández, A., León Andrade, M. and Ramírez Valverde, B. (2010) Agricultura y Crisis en Mexico: treinta años de políticas Económicas Neoliberales. Ra XImhal, 6, 323-337.
[3] SAGARPA (2012) Agricultura Protegida 2012.
[4] Koenig, D., Jiménez-Gómez, J.M., Kimura, S., Fulop, D., Chitwood, D.H., Headland, L.R., et al. (2013) Transcriptómica comparativo revela patrones de selección en domesticado y tomate silvestre. Proceedings of the National Academy of Sciences, EE.UU, 110, e2655-e2662.
[5] Bouzo, C.A., Favaro, J.C. and Astegionado, E.D. (2001) Estimación del área foliar en distintos cultivares de tomate (Lycopersicon esculentum Mill.) utilizando medidas foliares lineales. Investigación agraria. Producción y protección vegetales, 16, 249-256.
[6] Wahundeniya, W.M.K.B., Ramanan, R., Wickramatunga, C. and Weerakkodi, W.A.P. (2009) Evaluación de cultivares de tomate bajo condiciones protegidas en las condiciones de la isla de la Bahía. Actas del Seminario Nacional de Producción Sistema en condiciones adversas para una mayor productividad en A & N Islas, 22 a 24 dic 2009, India.
[7] Bertin, N. and Gary, C. (1993) Tomato Fruit-Set: A Case Study for Validation of the Model Tomgro. Acta Horticulturae, 328, 185-193.
[8] Bertin, N. and Heuvelink, E. (1993) Dry-Matter Production in a Tomato Crop: Comparison of Two Simulation Models. Journal of Horticultural Science, 68, 995-1011.
[9] López Cruz, L., Ramírez Arias, A. and Rojano Aguilar, A. (2005) Modelos matemáticos de hortalizas en invernadero: trascendiendo la contemplación de la dinámica de cultivos. Revista Chapingo Serie horticultura, Universidad Nacional de Chapingo, México.
[10] Bertin, N. (2005) Analysis of the Tomato Fruit Growth Response to Temperature and Plant Fruit Load in Relation to Cell Division, Cell Expansion and DNA Endoreduplication. Annals of Botany, 95, 439-447.
[11] Cochrane, K., De Young, C., Soto, D. and Bahri, T. (2009) Climate Change Implications for Fisheries and Aquaculture. FAO Fisheries and Aquaculture Technical Paper, 530, 212.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.