Supported TritonX-100 Polyaniline Nano-Porous Electrically Active Film onto Indium-Tin-Oxide Probe for Sensors Application
Raju Khan
DOI: 10.4236/aces.2011.13021   PDF   HTML     7,260 Downloads   11,876 Views   Citations


Supported tritonX100 polyaniline nano-porous electrically active film has been fabricated successfully onto indium-tin-oxide conducting probe using electrochemical polymerization process. The doping of TX-100 in the polymeric network of PANI was suggested using cyclic voltammeter, UV-vis spectroscopy, and Fourier Transform Infrared spectroscopy. The change in the surface morphology of PANI thin film due to incorporation of tritonX-100 was investigated using Atomic Forced Microscopy and porosity has been confirmed scanning electron microscopy, respectively. The surface morphology, uniformly disperse hexagonal close packing of TX-100 in PANI matrices due to the incorporation of TX-100 in polymeric network of PANI was confirmed by Atomic Force Microscopy. The electrical conductivity of PANI-TX-100 increases from 1.06 x 10-2 S/cm-1 to 4.95 x 10-2 S/cm-1 as the amount of TX-100 increases during the polymerization. The change in the morphology and electrical conductivity of PANI due to incorporation of TX-100 prove as a promising material for the sensing application.

Share and Cite:

R. Khan, "Supported TritonX-100 Polyaniline Nano-Porous Electrically Active Film onto Indium-Tin-Oxide Probe for Sensors Application," Advances in Chemical Engineering and Science, Vol. 1 No. 3, 2011, pp. 140-146. doi: 10.4236/aces.2011.13021.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Yamamaoto, M. Oshima, T. Hosaka and I. Isa, “Solid Electrolytic Capacitors Using an Aluminum Alloy Elec-trode and Conducting Polymers,” Synthetic Metals, Vol. 104, No. 1, 1999, pp. 33-38. doi:10.1016/S0379-6779(99)00003-X
[2] K. S. Ryu, K. M. Kim, S. G. Kang, G. J. Lee, J. Joo and S. H. Chang, “Electrochemical and Physical Characteriza-tion of Lithium Ionic Salt Doped Polyaniline as a Poly-mer Electrode of Lithium Secondary Battery,” Synthetic Metals, Vol. 110, No. 3, 2000, pp. 213-217. doi:10.1016/S0379-6779(99)00288-X
[3] A. Talei, J. Y. Lee, Y. K. Lee, J. Jang, J. A. Romagnoli, T. Taguchi and E. Maeder, “Dynamic Sensing Using Intel-ligent Composite: An Investigation to Development of New Ph Sensors and Electrochromic Devices,” Thin Solid Films, Vol. 363, No. 1-2, 2000, pp. 163-166. doi:10.1016/S0040-6090(99)00987-6
[4] A. Kumar, D. M. Welsh, M. C. Morvant, F. Piroux, K. A. Abboud and J. R. Reynolds, “Conducting Poly (3,4-alkylenedioxythiophene) Derivatives as Fast Elec-trochromics with High-Contrast Ratios,” Chemistry of Materials, Vol. 10, No. 3, 1998, pp. 896-902. doi:10.1021/cm9706614
[5] J. C. Scott, S. A. Carter, S. Karg and M. Angelopoulos, “Polymeric Anodes for Organic Light-Emitting Diodes,” Synthetic Metals, Vol. 85, No. 1-3, 1997, pp. 1197-1200. doi:10.1016/S0379-6779(97)80207-X
[6] Y. T. Shin, S. W. Shin, J. Shin, K. Lee and M. Cha, “Pulsed Laser Deposition of a Thin Conjugated-Polymer Film,” Thin Solid Films, Vol. 360, No. 1-2, 2000, pp. 13-16. doi:10.1016/S0040-6090(99)00962-1
[7] B. Wessling and J. Posdorfer, “Corrosion Prevention with an Organic Metal (polyaniline): Corrosion Test Results,” Electrochimica Acta, Vol. 44, No. 12, 1999, pp. 2139-2147. doi:10.1016/S0013-4686(98)00322-3
[8] R. Khan and M. Dhayal, “Chitosan/Polyaniline Hybrid Conducting Biopolymer Base Impedimetric Immunosen-sor to Detect Ochratoxin-A,” Biosensors & Bioelectron-ics, Vol. 24, No. 6, 2009, pp. 1700-1705. doi:10.1016/j.bios.2008.08.046
[9] A. A. Ansari, R. Khan, K. N. Sood and B. D. Malhotra, “Polyaniline-Cerium Oxide Nanocomposite for Hydrogen Peroxide Sensor,” Journal of Nanoscience & Nanotech-nology, Vol. 9, No. 8, 2009, pp. 4679-4685. doi:10.1166/jnn.2009.1085
[10] A. Kaushik, R. Khan, V. Gupta, B. D. Malhotra and S. P. Singh, “Hybrid Cross Linked Polyaniline-WO3 Nano-composite Thin Films for NOx Gas Sensing,” Journal of Nanoscience & Nanotechnology, Vol. 9, 2009, pp. 1792-1796. doi:10.1166/jnn.2009.417
[11] A. Kaushik, J. Kumar, M. K. Tiwari, R. Khan, B. D. Malhotra, V. Gupta and S. P. Singh, “Fabrication and Characterization of Polyaniline—ZnO Hybrid Nano-composite Thin Films,” Journal of Nanoscience & Nanotechnology, Vol. 8, No. 4, 2008, pp. 1757-1761. doi:10.1166/jnn.2008.006
[12] B. Wesseling, “Electrical Properties of Pyrrole and Its Copolymers,” Synthetic Metals, Vol. 4, No. 2, 1991, pp. 119-130.
[13] Y. Z. Zheng, K. Levon, T. Taka, J. Laasko and J. E. Osterholm, “Doping-induced Layered Structure in N-alkylated Polyanilines,” Polymer Journal, Vol. 28, No. 5, 1996, pp. 412-418. doi:10.1295/polymj.28.412
[14] Y. Cao, P. Smith, A. J. Heeger, PCT, Patent Application WO 92/2291, Vol. 91, 1992.
[15] Y. Xia, A. G. MacDiarmid and A. J. Epstein, “Camphorsulfonic Acid Fully Doped Polyaniline Emeraldine Salt: In situ Observation of Electronic and Conformational Changes Induced by Organic Vapors by an Ultraviolet/Visible/Near-Infrared Spectroscopic Method,” Macromolecules, Vol. 27, No. 24, 1994, pp. 7212-7214. doi:10.1021/ma00102a033
[16] A. G. MacDiarmid and A. J. Epstein, “The Concept of Secondary Doping as Applied to Polyaniline,” Synthetic Metals, Vol. 65, 1994, pp. 103-116. doi:10.1016/0379-6779(94)90171-6
[17] A. G. MacDiarmid, Y. N. Xia and J. M. Wiesinger, U.S. Patent 5, 773, 568 (1998).
[18] A. G. MacDiarmid and A. J. Epstein, “Secondary Doping in Polyaniline” Synthetic Metals, Vol. 69, No. 1-3, 1995, pp. 85-92. doi:10.1016/0379-6779(94)02374-8
[19] S. P. Armes and M. Aldissi, “Novel Colloidal Dispersons of Polyaniline,” Journal of the Chemical Society, Chemi-cal Communication, Vol. 2, 1989, pp. 88-89. doi:10.1039/c39890000088
[20] N. Kohut-Svelko, S. Reynaud and J. Francois, “Synthesis and Characterization of Polyaniline Prepared in the Presence of Nonionic Surfactants in an aqueous dispersion,” Synthetic Metals, Vol. 150, No. 2, 2005, pp. 107-114. doi:10.1016/j.synthmet.2004.12.022
[21] P. J. Kinlen, J. Liu, Y. Ding, C. R. Graham and E. E. Remsen, “Emulsion Polymerization Process for Organi-cally Soluble and Electrically Conducting Polyaniline,” Macromolecules, Vol. 31, No. 6, 1998, pp. 1735-1744. doi:10.1021/ma971430l
[22] S. Palaniappan, “Preparation of Polyaniline-Sulfate Salt by Emulsion and Aqueous-Polymerization Pathway Without Using-Protonic Acid,” Polymers for Advanced Technologies, Vol. 13, No. 1, 2002, pp. 54-59. doi:10.1002/pat.154
[23] H. Xia and Q. Wang, “Synthesis and Characterization of Conductive Polyaniline Nanoparticles Through Ul- trasonic Assisted Inverse Microemulsion Poly-me- rization,” Journal of Nanoparticle Research, Vol. 3, No. , 2001, pp. 401-441.
[24] P. S. Rao, S. Subrahmanya and D. N. Sathyanarayana, “Inverse Emulsion Polymerization: A New Route For the Synthesis of Conducting Polyaniline,” Synthetic Metals, Vol. 128, No. 3, 2002, pp. 311-316. doi:10.1016/S0379-6779(02)00016-4
[25] P.S. Rao, D.N. Sathyanarayana and S. Palaniappan, “Po-lymerization of Aniline in an Organic Peroxide System by the Inverted Emulsion Process,” Macromolecules, Vol. 35, No. 13, 2002, pp. 4988-4996. doi:10.1021/ma0114638
[26] D. W. C. Andrew, E. A. O’ Rear and B. P. Grady, “Ad-sorbed Surfactants as Templates for the Synthesis of Morphologically Controlled Polyaniline and Polypyrrole Nanostructures on Flat Surfaces: From Spheres to Wires to Flat Films,” Journal of the American Chemical Society, Vol. 125, No. 48, 2003, pp. 14793-14800. doi:10.1021/ja0365983
[27] J. P. Rabe, “Self-assembly of Single Macromolecules at Surfaces,” Current Opinion in Colloid & Interface Sci-ence, Vol. 3, No. 1, 1998, pp. 27-31. doi:10.1016/S1359-0294(98)80038-1
[28] D. Ichinohe, T. Aria and H. Kise, “Synthesis of Soluble Polyaniline in Reversed Micellar Systems,” Synthetic Metals, Vol. 84, No. 1-3, 1997, pp. 75-76. doi:10.1016/S0379-6779(96)03843-X
[29] D. Kim, J. Choi, J-Y Kim, Y-K Han and D. Sohn, “Size Control of Polyaniline Nanoparticle by Polymer Surfactant, Macromolecules, Vol. 35, No. 13, 2002, pp. 5314-5316. doi:10.1021/ma020162a
[30] M. Omastova, M. Trchova, J. Kovarova and J. Stejskal, “Synthesis and Structural Study of Polypyrroles Prepared in the Presence of Surfactants,” Synthetic Metals, Vol. 138, No. 3, 2003, pp. 447-455. doi:10.1016/S0379-6779(02)00498-8
[31] Z. Zhang, Z. Wei and M. Wan, “Nanostructures of Polyaniline Doped with Inorganic Acids,” Mcromo- lecules, Vol. 35, No. 15, 2002, pp. 5937-5942.
[32] A. N. Galatanu, I. S. Chrorrakis, D. F. Anghel and A. Khan, “Ternary Phase Diagram of the Triton X-100/ Poly(acrylic acid)/Water System,” Langmuir, Vol. 16, No. 11, 2000, pp. 4922-4928. doi:10.1021/la991668y
[33] R. J. Robson and E. A. Dennis, “The Size, Shape, and Hydration of Nonionic Surfactant Micelles Triton X-100,” The Journal of Physical Chemistry, Vol. 81, No. 11, 1977, pp. 1075-1077. doi:10.1021/j100526a010
[34] C. Tanford, Y. Nozaki and M. F. Rhode, “Size and Shape of Globular Micelles Formed in Aqueous Solution by N-Alkyl Polyoxyethylene Ethers,” The Journal of Physi-cal Chemistry, Vol. 81, No. 18, 1977, pp. 1555-1560. doi:10.1021/j100531a007
[35] A. A. Ribeiro and E. A. Dennis, “Proton Magnetic Reso-nance Relaxation Studies on The Structure of Mixed Mi-celles of Triton X-100 and Dimy- ristoylphosphatidyl-choline,” Biochemistry, Vol. 14, No. 17, 1975, pp. 3746-3755. doi:10.1021/bi00688a005
[36] T. C. Girija and M. V. Sangarranarayanan, “Poly- aniline-Based Nickel Electrodes For Electrochemical Supercapacitors—Influence of Triton X-100,” Journal of Power Sources, Vol. 159, No. 2, 2006, pp. 1519-1526. doi:10.1016/j.jpowsour.2005.11.078
[37] N. Arsalani, M. Khavei and A.A. Entezami, “Synthesis and Characterization of Novel NSubstituted Polyaniline by Triton X-100,” Iranian Polymer Journal, Vol. 12, No. 3, 2003, pp. 237-242.
[38] L.T. Cai, S.B. Yao and S.M. Zhou, “Surfactant effects on the polyaniline film,” Synthetic Metals, Vol. 88, No. 3, 1997, pp. 209-212. doi:10.1016/S0379-6779(97)03852-6
[39] K.R. Prasad and N. Munichandraiah, “Potentiodynamic Deposition of Polyaniline on Non-Platinum Metals and Characterization,” Synthetic Metals, Vol. 123, No. 3, 2001, pp. 459-468. doi:10.1016/S0379-6779(01)00334-4
[40] J.C. Cooper and E.A.H. Hall, “Electrochemical Response of an Enzyme-Loaded Polyaniline Film,” Biosens & Bio-electronics, Vol. 7, No. 7, 1992, pp. 473-485.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.