Archimedes’ <Book> to Eratosthenes in the Palimpsest and Archimedes in Heron’s Metrikon

DOI: 10.4236/ahs.2015.45025   PDF   HTML   XML   4,206 Downloads   4,994 Views  


It is argued that even with some new readings made by the publication of the Letter to Eratosthenes in the Archimedes Palimpsest, with the wonderful discovery of his so-called “mechanical method” (a certain way of theorizing in mathematical things by means of mechanical entities) at the beginning of the twentieth century, some important historical-philological and philosophicalepistemological issues still remain, which have already discussed in part in my writings. We produce some important testimonies taken from Metrikon by Heron of Alexandria in favour of our translations and interpretations of Archimedes’ lexicon, not without placing under investigation at the same time the personality and the importance of Hero in the history of philosophical, scientific and technological Greek-Hellenistic thought in line with Archimedes and the tradition of Italic thought of science (The quotations of the Greek texts of Archimedes, Heron and Pappus are my translations).

Share and Cite:

Boscarino, G. (2015) Archimedes’ to Eratosthenes in the Palimpsest and Archimedes in Heron’s Metrikon. Advances in Historical Studies, 4, 357-367. doi: 10.4236/ahs.2015.45025.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Acerbi, F. (2013). Metodo. Torino: Boringhieri.
[2] Boyer, C. (1982). Storia della matematica. Milano: Mondadori, 202.
[3] Boscarino, G. (1991). Grandezze fisiche e numeri matematici. Mondotre: La scuola italica.
[4] Boscarino, G. (1999). Tradizioni di pensiero. La tradizione filosofica italica della scienza e della realtà. Sortino: La scuola italica, p. 412.
[5] Boscarino, G. (2010). The Mystery of Archimedes. Archimedes, Physicist and Mathematician, Anti-Platonic and Anti-Aris- totelian Philosopher. In: S. A. Paipetis, & M. Ceccarelli (Eds.), The Genius of Archimedes—23 Centuries of Influence on Mathematics, Science and Engineering (pp.313-322). Dordrecht: Springer
[6] Boscarino, G. (2011). The Onto-Epistemological Background of Archimedes’ Mathema. Logic and Philosophy of Science, 9, 111-129.
[7] Boscarino, G. (2012). At the Origins of the Concepts of Máthema and Mekhané: Aristotle’s Mekhanikà and Archimedes’ TroposMekhanikòs. In T. Koetsier, & M. Ceccarelli (Eds.), Explorations in the History of Machines and Mechanisms Proceedings of HMM 2012(pp. 449-461). Dordrecht: Springer.
[8] Boscarino, G. (2014). The Italic School in Astronomy: From Pythagoras to Archimedes. Journal of Physical Science and Application, 4, 385-392.
[9] Boscarino, G. (2015) Archimedes’ Psammites and the Tradition of Italic Thought of Science. Advances in Historical Studies, 4, 8-16.
[10] Frajese, A. (1974). Opere. Torino: UTET.
[11] Geymonat, L. (1965). Storia della matematica. In Storia delle scienze, Torino: UTET.
[12] Guillaumin, J. Y. (1997). L’eloge de la géometriedans la préfacedulivre III des Metrica d’Héron d’Alexandrie. Revuedesétudesanciennes, 99, 91-99.
[13] Heath, S. T. (1912). The Works of Archimedes (p. 7). Oxford: N. Y. Dover Publications.
[14] Heath, S. T. (1981). A History of Greek Mathematics (Vol. II, pp. 316-331). New York: Dover Publications.
[15] Heiberg, J. L. (1906-1907). Eine neue Schrift des Archimedes in Rivista biblioteca mathematica.
[16] Heronis Alexandrini (1903). Opera quae supersunt omnia (Vol. III). Metrikon, A, B, C, H. Schoene, Lipsiae.
[17] Kline, M. (1991). Storia del pensiero matematico (Vol. 1, p. 136). Torino: Einaudi.
[18] Loria, G. (1914). Le scienze esatte nell’antica Grecia (p. 606). Milano: Hoepli.
[19] Netz, R. (2011). The Archimedes Palimpsest (Vol. II). Cambridge: Cambridge University Press.
[20] Netz, R. (2007). Il codice perduto di Archimede. Milano: Rizzoli.
[21] Newton, I. (1997). Principi matematici della filosofia naturale. Torino: UTET.
[22] Ver Eecke, P. (1933). Pappus d’Alexandrie: La Collection Mathématique avec une Introduction et des Notes. 2 Volumes, Fondation Universitaire de Belgique, Paris: Albert Blanchard (L. VIII, Introduction).
[23] Vitrac, B. (2008a). Faut-il réhabiliter Héron? Paris: Centre Louis.
[24] Vitrac, B. (2008b). Mécanique et mathématiques à Alexandrie: le cas de Héron. Online.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.