Share This Article:

Diameter Dependent Ultrasonic Characterization of InAs Semiconductor Nanowires

Abstract Full-Text HTML XML Download Download as PDF (Size:553KB) PP. 218-225
DOI: 10.4236/oja.2015.54017    3,438 Downloads   3,924 Views   Citations

ABSTRACT

In this paper, we report the diameter dependent ultrasonic characterization of wurtzite structured InAs semiconductor nanowires at the room temperature. In this work, we have calculated the non-linear higher order elastic constants of InAs nanowires validating the interaction potential model. The ultrasonic attenuation and velocity in the nanowires are determined using the elastic constants for different diameters of the nanowires. Where possible, the results are compared with the experiments. Finally, we have established the correlation between the size dependent thermal conductivity and the ultrasonic attenuation of the nanowires.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Gupta, M. , Dhawan, P. , Verma, S. and Yadav, R. (2015) Diameter Dependent Ultrasonic Characterization of InAs Semiconductor Nanowires. Open Journal of Acoustics, 5, 218-225. doi: 10.4236/oja.2015.54017.

References

[1] Cui, Y., Wei, Q., Park, H. and Lieber, C.M. (2001) Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science, 293, 1289-1292.
http://dx.doi.org/10.1126/science.1062711
[2] Hahm, J. and Lieber, C.M. (2004) Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors. Nano Letters, 4, 51-54.
http://dx.doi.org/10.1021/nl034853b
[3] Duan, X., Huang, Y., Cui, Y., Wang, J. and Lieber, C.M. (2001) Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices. Nature, 409, 66-69.
http://dx.doi.org/10.1038/35051047
[4] Cui, Y., Zhong, Z., Wang, D., Wang, W.U. and Lieber, C.M. (2003) High Performance Silicon Nanowire Field Effect Transistors. Nano Letters, 3, 149-152.
http://dx.doi.org/10.1021/nl025875l
[5] Ng, H.T., Han, J., Yamada, T., Nguyen, P., Chen, Y.P. and Meyyappan, M. (2004) Single Crystal Nanowire Vertical Surround-Gate Field-Effect Transistor. Nano Letters, 4, 1247-1452.
http://dx.doi.org/10.1021/nl049461z
[6] Persson, A.I., Björk, M.T., Jeppesen, S., Wagner, J.B., Wallenberg, L.R. and Samuelson, L. (2006) InAs1-xPx Nanowires for Device Engineering, Nano Letters, 6, 403-407.
http://dx.doi.org/10.1021/nl052181e
[7] Park, H., Barrelet, C.J., Wu, Y., Tian, B., Qian, F. and Lieber, C.M. (2008) A Wavelength-Selective Photonic-Crystal Waveguide Coupled to a Nanowire Light Source. Nature Photonics, 2, 622-626.
http://dx.doi.org/10.1038/nphoton.2008.180
[8] Gong, X.Y., Kan, H., Makino, T., Yamaguchi, T., Nakatskasa, T., Kumagawa, M., Rowell, N.L., Wang, A. and Rinfret, R. (1995) High Quality InAs1–ySby/InAs Multilayers for Mid-IR Detectors. Crystal Research & Technology, 30, 603-612.
http://dx.doi.org/10.1002/crat.2170300505
[9] Shenoi, R.V., Attaluri, R.S., Siroya, A., Shao, J., Sharma, Y.D., Stintz, A., Vandervelde, T.E. and Krishna, S. (2008) Low-Strain InAs/InGaAs/GaAs Quantum Dots-in-a-Well Infrared Photodetector. Journal of Vacuum Science & Technology B, 26, 1136-1139.
http://dx.doi.org/10.1116/1.2835063
[10] Mou, S., Petschke, A., Lou, Q., Chuang, S.L., Li, J.V. and Hill, C.J. (2008) Midinfrared InAs/GaSb Type-II Superlattice Interband Tunneling Photodetectors. Applied Physics Letters, 92, Article ID: 153505.
http://dx.doi.org/10.1063/1.2909538
[11] Huang, Y., Duan, X., Cui, Y., Lauhon, L.J., Kim, K. and Lieber, C.M. (2001) Logic Gates and Computation from Assembled Nanowire Building Blocks. Science, 294, 1313-1317.
http://dx.doi.org/10.1126/science.1066192
[12] Wang, J., Gudiksen, M.S., Duan, X., Cui, Y. and Lieber, C.M. (2001) Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires. Science, 293, 1455-1457.
http://dx.doi.org/10.1126/science.1062340
[13] Pettersson, H., Trägardh, J., Persson, A.I., Landin, L., Hessman, D. and Samuelson, L. (2006) Infrared Photodetectors in Heterostructure Nanowires. Nano Letters, 6, 229-232.
http://dx.doi.org/10.1021/nl052170l
[14] Law, M., Greene, L.E., Johnson, J.C., Saykally, R. and Yang, P. (2005) Nanowire Dye-Sensitized Solar Cells. Nature Materials, 4, 455-459.
http://dx.doi.org/10.1038/nmat1387
[15] Koguchi, M., Kakibayashi, H., Yazawa, M., Hiruma, K. and Katsuyama, T. (1992) Crystal Structure Change of GaAs and InAs Whiskers from Zinc-Blende to Wurtzite Type. Japanese Journal of Applied Physics Part 1—Regular Papers Short Notes & Review Papers, 31, 2061-2065.
[16] Martensson, T., Svensson, C.P.T., Wacaser, B.A., Larsson, M.W., Seifert, W., Deppert, K., Gustafsson, A., Wallenberg, L.R. and Samuelson, L. (2004) Epitaxial III-V Nanowires on Silicon. Nano Letters, 4, 1987-1990.
http://dx.doi.org/10.1021/nl0487267
[17] Zhou, F. (2009) Thermoelectric Transport in Semiconducting Nanowires. Ph.D. Dissertation, The University of Texas, Austin.
[18] Caroff, P., Dick, K.A., Johansson, J., Messing, M.E., Deppert, K. and Samuelson, L. (2009) Controlled Polytypic and Twin-Plane Superlattices in III-V Nanowires. Nature Nanotechnology, 4, 50-55.
http://dx.doi.org/10.1038/nnano.2008.359
[19] Froberg, L.E., Seifert, W. and Johansson, J. (2007) Diameter-Dependent Growth Rate of InAs Nanowires. Physical Review B, 76, Article ID: 153401.
http://dx.doi.org/10.1103/PhysRevB.76.153401
[20] Persson, A.I., Froberg, L.E., Jeppesen, S., Bjork, M.T. and Samuelson, L. (2007) Surface Diffusion Effects on Growth of Nanowires by Chemical Beam Epitaxy. Journal of Applied Physics, 101, Article ID: 034313.
http://dx.doi.org/10.1063/1.2435800
[21] Yadav, A.K., Yadav, R.R., Pandey, D.K. and Singh, D. (2008) Ultrasonic Study of Fission Products Precipitated in the Nuclear Fuel. Materials Letters, 62, 3258-3261.
[22] Sindhu, S. and Menon, C.S. (1995) Fourth Order Nonlinear Elastic Coefficient of Hexagonal Close Packed Lattice. Journal of Physics and Chemistry of Solids, 57, 1307-1309.
http://dx.doi.org/10.1016/0022-3697(95)00323-1
[23] Verma, S.K., Pandey, D.K. and Yadav, R.R. (2012) Size Dependent Ultrasonic Properties of InN Nanowires. Physica B: Condensed Matter, 407, 3731-3735.
http://dx.doi.org/10.1016/j.physb.2012.05.052
[24] Dhawan, P.K., Wan, M., Verma, S.K., Pandey, D.K. and Yadav, R.R. (2015) Effect of Diameter and Surface Roughness on Ultrasonic Properties of GaAs Nanowires. Journal of Applied Physics, 117, Article ID: 074307.
http://dx.doi.org/10.1063/1.4913289
[25] Magnus, W.L., Jakob, B.W., Mathias, W., Hakansson, P., Fröberg, L.E., Samuelson, L. and Wallenberg, L.R. (2007) Strain Mapping in Free-Standing Heterostructured Wurtzite InAs/InP Nanowires. Nanotechnology, 18, Article ID: 015504.
http://dx.doi.org/10.1088/0957-4484/18/1/015504
[26] Pandey, D.K., Yadawa, P.K. and Yadav, R.R. (2007) Ultrasonic Properties of Hexagonal ZnS at Nanoscale. Materials Letters, 61, 5194-5198.
http://dx.doi.org/10.1016/j.matlet.2007.04.028
[27] Pandey, D.K., Singh, D. and Yadav, R.R. (2007) Ultrasonic Wave Propagation in 3rd Group Nitrides. Applied Acoustics, 68, 766-777.
http://dx.doi.org/10.1016/j.apacoust.2006.04.004
[28] Gray, D.E. (1972) American Institute of Physics Handbook. 3rd Edition, McGraw-Hill, New York, 4-58.
[29] Carrete, J., Longo, R.C. and Gallego, L.J. (2011) Prediction of Phonon Thermal Transport in Thin GaAs, InAs and InP Nnowires by Molecular Dynamics Simulations Influence of the Interatomic Potential. Nanotechnology, 22, Article ID: 185704.
http://dx.doi.org/10.1088/0957-4484/22/18/185704
[30] Keck, M.J. and Sladek, R.J. (1970) Relaxation Attenuation of Ultrasonic Waves in InAs. Physical Review B, 2, 3135.
http://dx.doi.org/10.1103/PhysRevB.2.3135
[31] Keck, M.J. and Sladek, R.J. (1969) Attenuation of Ultrasonic Waves in InAs at Low Temperatures. Physical Review, 185, 1083.
http://dx.doi.org/10.1103/PhysRev.185.1083
[32] Ubale, A.U. and Kulkarni, D.K. (2005) Preparation and Study of Thickness Dependent Electrical Characteristics of Zinc Sulfide Thin Films. Bulletin of Materials Science, 28, 43-47.
http://dx.doi.org/10.1007/BF02711171
[33] Yadav, R.R. and Pandey, D.K. (2005) Ultrasonic Properties at the Nanoscale in Some Metals. Materials Letters, 59, 564-569.
http://dx.doi.org/10.1016/j.matlet.2004.10.046

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.