The Effect of Photoacclimation on Photosynthetic Energy Storage Efficiency, Determined by Photoacoustics


Photosynthesis rates in phytoplankton depend on light intensity and its spectral composition, however their relation changes with photoacclimation. During the photoacclimation process algal cells optimize their har-vesting and utilization of available light through series of related physical, biophysical, biochemical and physiological changes. These changes result in the ability of phytoplankton to survive under dim light when transported to the depth of the water column and avoid photodynamic damage when exposed to the intense radiation at the surface. Any reduction in the efficiency of light utilization results in decreased rates of pho-tosynthesis rate and slow growth. We present here the study of changes in photosynthetic energy storage efficiency of three phytoplankton species upon photoacclimation to low and high light, as measured by photo-acoustics. Our results illustrate the power of photoacoustics as a tool in aquatic ecology and in the physiological research of phytoplankton.

Share and Cite:

Y. Pinchasov-Grinblat, R. Hoffman and Z. Dubinsky, "The Effect of Photoacclimation on Photosynthetic Energy Storage Efficiency, Determined by Photoacoustics," Open Journal of Marine Science, Vol. 1 No. 2, 2011, pp. 43-49. doi: 10.4236/ojms.2011.12005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] P. G. Falkowski, “Physiological Response of Phytoplankton to Natural Light Regimes,” Journal of Plankton Research, Vol. 6, No. 2, 1984, pp. 295-307. doi:10.1093/plankt/6.2.295
[2] P. G. Falkowski and J. LaRoche, “Acclimation to Spectral Irradiance in Algae,” Journal of Phycology, Vol. 27, No. 1, 1991, pp. 8-14. doi:10.1111/j.0022-3646.1991.00008.x
[3] Z. Dubinsky, “Light Utilization Efficiency in Natural Phytoplankton Communities,” In: P. G. Falkowski, ed., Primary Productivity in the Sea, Plenum Press, New York, 1980, pp. 83-97.
[4] Z. Dubinsky and N. Stambler, “Photoacclimation Processes in Phytoplankton: Mechanisms, Consequences, and Applications,” Aquatic Microbial Ecology, Vol. 56, No. 2-3, 2009, pp. 163-176. doi:10.3354/ame01345
[5] M. Schagerl and B. Muller, “Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria,” Journal of Plant Physiology, Vol. 163, No. 7, 2006, pp. 709-716. doi:10.1016/j.jplph.2005.09.015
[6] M. C. Wang, D. Bohmann and H. Jasper, “JNK Signaling Confers Tolerance to Oxidative Stress and Extends Lifespan in Drosophila,” Developmental Cell, Vol. 5, No. 5, 2003, pp. 811-816. doi:10.1016/S1534-5807(03)00323-X
[7] C. M. Fan, J. A. Porter, C. Chiang, D. T. Chang, P. A. Beachy and M. Tessierlavigne, “Long-Range Sclerotome Induction by Sonic Hedgehog—Direct Role of the Amino-Terminal Cleavage Product and Modulation by the Cyclic-AMP Signaling Pathway,” Cell, Vol. 81, No. 3, 1995, pp. 457-465. doi:10.1016/0092-8674(95)90398-4
[8] Z. Dubinsky, R.Matsukawa and I. Karube, “Photobiological Aspects of Algal Mass Culture,” Journal of Marine Biotechnology, Vol. 2, 1995, pp. 61-65.
[9] Z. Dubinsky, P. G. Falkowski and K. Wyman, “Light Harvesting and Utilization in Phytoplankton,” Plant & Cell Physiology, Vol. 27, No. 7, 1986, pp. 1335-1350.
[10] T. Berner, K. Wyman, Z. Dubinsky and P. G. Falkowski, “Photoadaptation and the “Package Effect” in Dunaliella Tertiolecta (Chlorophyceace),” Journal of Phycology, Vol. 25, No. 1, 1989, pp. 70-81. doi:10.1111/j.0022-3646.1989.00070.x
[11] A. F. Post, Z. Dubinsky, K. Wuman and P. G. Falkowski, “Kinetics of Light-Intensity Adaptation in a Marine Planktonic Diatom,” Marine Biology, Vol. 83, No. 3, 1984, pp. 231-238. doi:10.1007/BF00397454
[12] S. Malkin and D. Cahen, “Photoacoustic Spectroscopy and Radiant Energy Conversion: Theory of the Effect with Special Emphasis on Photosynthesis,” Photochemistry and Photobiology, Vol. 29, No. 4, 1979, pp. 803-813. doi:10.1111/j.1751-1097.1979.tb07770.x
[13] O. Canaani, S. Malkin and D. Mauzerall, “Pulsed Photoacoustic Detection of Flash-Induced Oxygen Evolution from Intact Leaves and Its Oscillations,” Proceedings of National Academy of Science of USA, Vol. 85, No. 13, 1988. pp. 4725-4729. doi:10.1073/pnas.85.13.4725
[14] S. Malkin, S. K. Herbert and D. C. Fork, “Light Distribution, Transfer and Utilization in the Marine Red Alga Porphyra Perforata from Photoacoustic Energy-Storage Measurements,” Biochimica et Biophysica Acta, Vol. 1016, No. 2, 1990, pp. 177-189. doi:10.1016/0005-2728(90)90056-A
[15] Z. Dubinsky, J. Feitelson and D. C. Mauzerall, “Listening to Phytoplankton: Measuring Biomass and Photosynthesis by Photoacoustics,” Journal of Phycology, Vol. 34, No. 5, 1998, pp. 888-892. doi:10.1046/j.1529-8817.1998.340888.x
[16] D. C. Mauzerall, J. Feitelson and Z. Dubinsky, “Discriminating between Phytoplankton Taxa by Photoacoustics,” Israel Journal of Chemistry, Vol. 38, No. 3, 1998, pp. 257-260.
[17] Y. Pinchasov, D. Kotlyarevsky, Z. Dubinsky, D. C. Mauzerall and J. Feitelson, “Photoacoustic as a Diagnostic Tool for Probing the Physiological Status of Phytoplankton,” Israel Journal of Plant Sciences, Vol. 53, No. 1, 2005, pp. 1-10. doi:10.1560/4DVV-JT78-G7VW-QTFM
[18] R. R. L. Guillard and J. H. Ryther, “Studies of Marine Planktonic Diatoms. I. Cyclotella Nana Hustedt and Detonula Confervacea (Cleve) Gran,” Canadian Journal of Microbiology, Vol. 8, No. 2, 1962, pp. 229-239. doi:10.1139/m62-029
[19] S. W. Jeffrey and G. F. Humphrey, “New Spectrophotometric Equation for Determining Chlorophyll A, B, C1 and C2 in Higher Plants, Algae and Natural Phytoplankton,” Biochemie Physiolgie der Pflanzen, Vol. 167, 1975, pp. 194-204.
[20] P. G. Falkowski, “Light-shade Adaptation in Marine Phytoplankton Primary Productivity in the Sea,” Plenum Press, New York, 1980, pp. 99-119.
[21] P. G. Falkowski, “Physiological Response of Phytoplankton to Natural Light Regimes,” Journal of Plankton Research, Vol. 6, No. 2, 1984, pp. 295-307. doi:10.1093/plankt/6.2.295
[22] M. Ritz, J. C. Thomas, A. Spilar and A. L. Etienne, “Kinetics of Photoacclimation in Response to a Shift to High Light of the Red Alga Rhodella violacea Adapted to Low Irradiance,” Plant Physiology, Vol. 123, No. 4, 2000, pp. 1415-1426. doi:10.1104/pp.123.4.1415
[23] H. L. MacIntyre, T. M. Kana and J. R. Geider, “The Effect of Water Motion on the Short-Term Rates of Photosynthesis by Marine Phytoplankton,” Trends in Plant Science, 2000, Vol. 5, No. 1, pp. 12-17. doi:10.1016/S1360-1385(99)01504-6
[24] E. Steemann-Nielsen, “The Use of Radioactive Carbon (14C) for Measuring Organic Production in the Sea,” Journal du Conseil, Perm International pour l’Exploration de la Mer, Vol. 18, 1952, pp. 117-140.
[25] T. Berner, Z. Dubinsky, F. Schanz, J. U. Grobbelaar, U. Uehlinger and P. Falkowski, “The Measurement of Primary Productivity in a High Rate Oxidation Pond,” Journal of Plankton Research, Vol. 8, No. 4, 1986, pp. 659-672. doi:10.1093/plankt/8.4.659
[26] Z. Dubinsky, P. G. Falkowski, A. F. Post and U. M. van Hes, “A System for Measuring Phytoplankton Photosynthesis in a Defined Light Field with an Oxygen Electrode,” Journal of Plankton Research, Vol. 9, No. 4, 1987, pp. 607-612. doi:10.1093/plankt/9.4.607
[27] P. G. Falkowski, K. Wyman, A. Ley and D. Mauzerall, “Relationship of Steady State Photosynthesis to Fluorescence in Eucaryotic Algae,” Biochimica et Biophysica Acta, Vol. 849, No. 2, 1986, pp. 183-192. doi:10.1016/0005-2728(86)90024-1
[28] R. Iglesias-Prieto and R. K. Trench, “Acclimation and Adaptation to Irradiance in Symbiotic Dinoflagellates. I. Responses of the Photosynthetic Unit to Changes in Photon Flux Density,” Marine Ecology Progress Series, Vol. 113, 1994, pp. 163-175. doi:10.3354/meps113163

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.