Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods

Abstract

The photocatalyic activity of titania is a very promising mechanism that has many possible applications like purification of air and water [1]-[4]. To make it even more attractive, titania can be combined with silica to increase the photocatalytic efficiency and durability of the photocatalytic material, while lowering the production costs [1]. In this article, relevant literature is reviewed to obtain an overview about the chemistry and physics behind some of the different parameters that lead to cost-effective photocatalytic titania-silica composites. The first part of this review deals with the mechanisms involved in the photocatalytic activity, then the chemistry behind certain methods for the synthesis of the titania-silica composites is discussed, and in the last and third part of this review, the influence of silica supports on titania is discussed. These three sections represent three different fields of research that are combined in this review to obtain better insights on the photocatalytic titania-silica composites. While many research subjects in these fields have been well known for some time now, some subjects are only more recently resolved and some subjects are still under discussion (e.g. the cause for the increased hydrophilic surface of titania after illumination). This article aims to review the most important literature to give an overview of the current situation of the fundamentals of photocatalysis and synthesis of the cost-effective photocatalyic composites. It is found that the most cost-effective photocatalytic titania-silica composites are the ones that have a thin anatase layer coated on silica with a large specific surface area, and are prepared with the precipitation or sol-gel methods.

Share and Cite:

Hendrix, Y. , Lazaro, A. , Yu, Q. and Brouwers, J. (2015) Titania-Silica Composites: A Review on the Photocatalytic Activity and Synthesis Methods. World Journal of Nano Science and Engineering, 5, 161-177. doi: 10.4236/wjnse.2015.54018.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Gao, X. and Wachs, I.E. (1999) Titania-Silica as Catalysts: Molecular Structural Characteristics and Physico-Chemical Properties. Catalysis Today, 51, 233-254.
http://dx.doi.org/10.1016/S0920-5861(99)00048-6
[2] Hüsken, G., Hunger, M. and Brouwers, H.J.H. (2009) Experimental Study of Photocatalytic Concrete Products for Air Purification. Building and environment, 44, 2463-2474.
http://dx.doi.org/10.1016/j.buildenv.2009.04.010
[3] Fujishima, A., Zhang, X. and Tryk, D.A. (2008) TiO2 Photocatalysis and Related Surface Phenomena. Surface Science Reports, 63, 515-582.
http://dx.doi.org/10.1016/j.surfrep.2008.10.001
[4] Hashimoto, K., Irie, H. and Fujishima, A. (2005). TiO2 Photocatalysis: A Historical Overview and Future Prospects. Japanese Journal of Applied Physics, 44, 8269.
http://dx.doi.org/10.1143/JJAP.44.8269
[5] Anpo, M., Aikawa, N., Kubokawa, Y., Che, M., Louis, C. and Giamello, E. (1985) Photoluminescence and Photocatalytic Activity of Highly Dispersed Titanium Oxide Anchored onto Porous Vycor Glass. The Journal of Physical Chemistry, 89, 5017-5021.
http://dx.doi.org/10.1021/j100269a025
[6] Fujishima, A., and Zhang, X. (2006) Titanium Dioxide Photocatalysis: Present Situation and Future Approaches. Comptes Rendus Chimie, 9, 750-760.
http://dx.doi.org/10.1016/j.crci.2005.02.055
[7] Turchi, C.S. and Ollis, D.F. (1990) Photocatalytic Degradation of Organic Water Contaminants: Mechanisms Involving Hydroxyl Radical Attack. Journal of catalysis, 122, 178-192.
http://dx.doi.org/10.1016/0021-9517(90)90269-P
[8] Ballari, M.M. and Brouwers, H.J.H. (2013) Full Scale Demonstration of Air-Purifying Pavement. Journal of hazardous materials, 254, 406-414.
http://dx.doi.org/10.1016/j.jhazmat.2013.02.012
[9] Hüsken, G., Hunger, M., and Brouwers, H.J. (2007) Comparative Study on Cementitious Products Containing Titanium Dioxide as Photo-Catalyst. Proceedings of the International RILEM Symposium on Photocatalysis, Environment and Construction Materials—TDP, Florence, 8-9 October 2007, 147-154.
[10] Hunger, M., Hüsken, G. and Brouwers, H.J.H. (2010) Photocatalytic Degradation of Air Pollutants—From Modeling to Large Scale Application. Cement and Concrete Research, 40, 313-320.
http://dx.doi.org/10.1016/j.cemconres.2009.09.013
[11] Linsebigler, A.L., Lu, G. and Yates Jr., J.T. (1995) Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chemical Reviews, 95, 735-758.
http://dx.doi.org/10.1021/cr00035a013
[12] Anpo, M., Aikawa, N., Kodama, S. and Kubokawa, Y. (1984) Photocatalytic Hydrogenation of Alkynes and Alkenes with Water over Titanium Dioxide. Hydrogenation Accompanied by Bond Fission. The Journal of Physical Chemistry, 88, 2569-2572.
http://dx.doi.org/10.1021/j150656a028
[13] Sirikawinkobkul, N., Kalambaheti, C., Jiemsirilers, S., Kashima, D.P. and Jinawath, S. (2009) Synthesis, Characterization and Photocatalytic Activity of Visible-Light Titania/Silica Photocatalyst. 18th International Conference on Composite Materials, Edinburgh, 27-31 July 2009.
[14] Montes, M., Getton, F.P., Vong, M.S.W. and Sermon, P.A. (1997) Titania on Silica. A Comparison of Sol-Gel Routes and Traditional Methods. Journal of Sol-Gel Science and Technology, 8, 131-137.
http://dx.doi.org/10.1007/BF02436830
[15] Huang, C.H., Bai, H., Liu, S.L., Huang, Y.L. and Tseng, Y.H. (2011) Synthesis of Neutral SiO2/TiO2 Hydrosol and Its Photocatalytic Degradation of Nitric Oxide Gas. Micro & Nano Letters, 6, 646-649.
http://dx.doi.org/10.1049/mnl.2011.0331
[16] Ding, Z., Lu, G.Q. and Greenfield, P.F. (2000) A Kinetic Study on Photocatalytic Oxidation of Phenol in Water by Silica-Dispersed Titania Nanoparticles. Journal of Colloid and Interface Science, 232, 1-9.
http://dx.doi.org/10.1006/jcis.2000.7154
[17] Gao, X., Bare, S.R., Fierro, J.L.G., Banares, M.A. and Wachs, I.E. (1998) Preparation and In-Situ Spectroscopic Characterization of Molecularly Dispersed Titanium Oxide on Silica. The Journal of Physical Chemistry B, 102, 5653-5666.
http://dx.doi.org/10.1021/jp981423e
[18] Yamashita, H., Ichihashi, Y., Anpo, M., Hashimoto, M., Louis, C. and Che, M. (1996) Photocatalytic Decomposition of NO at 275 K on Titanium Oxides Included within Y-Zeolite Cavities: The Structure and Role of the Active Sites. The Journal of Physical Chemistry, 100, 16041-16044.
http://dx.doi.org/10.1021/jp9615969
[19] Anpo, M., Yamashita, H., Ichihashi, Y., Fujii, Y. and Honda, M. (1997) Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt. The Journal of Physical Chemistry B, 101, 2632-2636.
http://dx.doi.org/10.1021/jp962696h
[20] Anpo, M., Yamashita, H., Ikeue, K., Fujii, Y., Zhang, S.G., Ichihashi, Y. and Tatsumi, T. (1998) Photocatalytic Reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts. Catalysis Today, 44, 327-332.
http://dx.doi.org/10.1016/S0920-5861(98)00206-5
[21] Fernández, A., Caballero, A. and González-Elipe, A.R. (1992) Size and Support Effects in the Photoelectron Spectra of Small TiO2 Particles. Surface and Interface Analysis, 18, 392-396.
http://dx.doi.org/10.1002/sia.740180604
[22] Anpo, M., Yamashita, H., Ichihashi, Y. and Ehara, S. (1995) Photocatalytic Reduction of CO2 with H2O on Various Titanium Oxide Catalysts. Journal of Electroanalytical Chemistry, 396, 21-26.
http://dx.doi.org/10.1016/0022-0728(95)04141-A
[23] Ding, Z., Hu, X., Lu, G.Q., Yue, P.L. and Greenfield, P.F. (2000) Novel Silica Gel Supported TiO2 Photocatalyst Synthesized by CVD Method. Langmuir, 16, 6216-6222.
http://dx.doi.org/10.1021/la000119l
[24] Yamashita, H., Ichihashi, Y., Harada, M., Stewart, G., Fox, M.A. and Anpo, M. (1996) Photocatalytic Degradation of 1-Octanol on Anchored Titanium Oxide and on TiO2 Powder Catalysts. Journal of Catalysis, 158, 97-101.
http://dx.doi.org/10.1006/jcat.1996.0010
[25] Sayilkan, F., Asilturk, M., Sener, S., Erdemoglu, S., Erdemoglu, M. and Sayilkan, H. (2007) Hydrothermal Synthesis, Characterization and Photocatalytic Activity of Nanosized TiO2 Based Catalysts for Rhodamine B Degradation. Turkish Journal of Chemistry, 31, 211-221.
[26] Chuan, X.Y., Hirano, M. and Inagaki, M. (2004) Preparation and Photocatalytic Performance of Anatase-Mounted Natural Porous Silica, Pumice, by Hydrolysis under Hydrothermal Conditions. Applied Catalysis B: Environmental, 51, 255-260.
http://dx.doi.org/10.1016/j.apcatb.2004.03.004
[27] Hirano, M. and Ota, K. (2004) Preparation of Photoactive Anatase-Type TiO2/Silica Gel by Direct Loading Anatase-Type TiO2 Nanoparticles in Acidic Aqueous Solutions by Thermal Hydrolysis. Journal of Materials Science, 39, 1841-1844.
http://dx.doi.org/10.1023/B:JMSC.0000016199.85213.0b
[28] Hirano, M. and Ota, K. (2004) Direct Formation and Photocatalytic Performance of Anatase (TiO2)/Silica (SiO2) Composite Nanoparticles. Journal of the American Ceramic Society, 87, 1567-1570.
http://dx.doi.org/10.1111/j.1551-2916.2004.01567.x
[29] Kim, E.Y., Whang, C.M., Lee, W.I. and Kim, Y.H. (2006) Photocatalytic Property of SiO2/TiO2 Nanoparticles Prepared by Sol-Hydrothermal Process. Journal of Electroceramics, 17, 899-902.
http://dx.doi.org/10.1007/s10832-006-9071-5
[30] Fu, X., Clark, L.A., Yang, Q. and Anderson, M.A. (1996) Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides: TiO2/SiO2 and TiO2/ZrO2. Environmental Science & Technology, 30, 647-653.
http://dx.doi.org/10.1021/es950391v
[31] Anderson, C. and Bard, A.J. (1995) An Improved Photocatalyst of TiO2/SiO2 Prepared by a Sol-Gel Synthesis. The Journal of Physical Chemistry, 99, 9882-9885.
http://dx.doi.org/10.1021/j100024a033
[32] Cheng, P., Zheng, M.P., Huang, Q., Jin, Y.P. and Gu, M.Y. (2003) Enhanced Photoactivity of Silica-Titania Binary Oxides Prepared by Sol-Gel Method. Journal of Materials Science Letters, 22, 1165-1168.
http://dx.doi.org/10.1023/A:1025187330150
[33] Smitha, V.S., Manjumol, K.A., Baiju, K.V., Ghosh, S., Perumal, P. and Warrier, K.G.K. (2010) Sol-Gel Route to Synthesize Titania-Silica Nano Precursors for Photoactive Particulates and Coatings. Journal of Sol-Gel Science and Technology, 54, 203-211.
http://dx.doi.org/10.1007/s10971-010-2178-9
[34] Guo, X.C. and Dong, P. (1999) Multistep Coating of Thick Titania Layers on Monodisperse Silica Nanospheres. Langmuir, 15, 5535-5540.
http://dx.doi.org/10.1021/la990220u
[35] Kamaruddin, S. and Stephan, D. (2014) Sol-Gel Mediated Coating and Characterization of Photocatalytic Sand and Fumed Silica for Environmental Remediation. Water, Air, & Soil Pollution, 225, 1948.
http://dx.doi.org/10.1007/s11270-014-1948-3
[36] Shan, A.Y., Ghazi, T.I.M. and Rashid, S.A. (2010) Immobilisation of Titanium Dioxide onto Supporting Materials in Heterogeneous Photocatalysis: A Review. Applied Catalysis A: General, 389, 1-8.
http://dx.doi.org/10.1016/j.apcata.2010.08.053
[37] Guan, K. (2005) Relationship between Photocatalytic Activity, Hydrophilicity and Self-Cleaning Effect of TiO2/SiO2 Films. Surface and Coatings Technology, 191, 155-160.
http://dx.doi.org/10.1016/j.surfcoat.2004.02.022
[38] Jung, K.Y. and Park, S.B. (2000) Enhanced Photoactivity of Silica-Embedded Titania Particles Prepared by Sol-Gel Process for the Decomposition of Trichloroethylene. Applied Catalysis B: Environmental, 25, 249-256.
http://dx.doi.org/10.1016/S0926-3373(99)00134-4
[39] Ismail, A.A., Ibrahim, I.A., Ahmed, M.S., Mohamed, R.M. and El-Shall, H. (2004) Sol-Gel Synthesis of Titania-Silica Photocatalyst for Cyanide Photodegradation. Journal of Photochemistry and Photobiology A: Chemistry, 163, 445-451.
http://dx.doi.org/10.1016/j.jphotochem.2004.01.017
[40] Xie, C., Xu, Z., Yang, Q., Xue, B., Du, Y. and Zhang, J. (2004) Enhanced Photocatalytic Activity of Titania-Silica Mixed Oxide Prepared via Basic Hydrolyzation. Materials Science and Engineering: B, 112, 34-41.
http://dx.doi.org/10.1016/j.mseb.2004.05.011
[41] Zhang, X., Zhang, F. and Chan, K.Y. (2005) Synthesis of Titania-Silica Mixed Oxide Mesoporous Materials, Characterization and Photocatalytic Properties. Applied Catalysis A: General, 284, 193-198.
http://dx.doi.org/10.1016/j.apcata.2005.01.037
[42] Yang, J., Zhang, J., Zhu, L., Chen, S., Zhang, Y., Tang, Y. and Li, Y. (2006) Synthesis of Nano Titania Particles Embedded in Mesoporous SBA-15: Characterization and Photocatalytic Activity. Journal of Hazardous Materials, 137, 952-958.
http://dx.doi.org/10.1016/j.jhazmat.2006.03.017
[43] Maggos, T., Plassais, A., Bartzis, J.G., Vasilakos, C., Moussiopoulos, N. and Bonafous, L. (2008) Photocatalytic Degradation of NOx in a Pilot Street Canyon Configuration Using TiO2-Mortar Panels. Environmental Monitoring and Assessment, 136, 35-44.
http://dx.doi.org/10.1007/s10661-007-9722-2
[44] Strini, A., Cassese, S. and Schiavi, L. (2005) Measurement of Benzene, Toluene, Ethylbenzene and o-Xylene Gas Phase Photodegradation by Titanium Dioxide Dispersed in Cementitious Materials Using a Mixed Flow Reactor. Applied Catalysis B: Environmental, 61, 90-97.
http://dx.doi.org/10.1016/j.apcatb.2005.04.009
[45] Ângelo, J., Andrade, L. and Mendes, A. (2014) Highly Active Photocatalytic Paint for NOx Abatement under Real-Outdoor Conditions. Applied Catalysis A: General, 484, 17-25.
http://dx.doi.org/10.1016/j.apcata.2014.07.005
[46] Chen, J. and Poon, C.S. (2009) Photocatalytic Construction and Building Materials: From Fundamentals to Applications. Building and Environment, 44, 1899-1906.
http://dx.doi.org/10.1016/j.buildenv.2009.01.002
[47] Paz, Y. (2010) Application of TiO2 Photocatalysis for Air Treatment: Patents’ Overview. Applied Catalysis B: Environmental, 99, 448-460.
http://dx.doi.org/10.1016/j.apcatb.2010.05.011
[48] Yu, Q.L. and Brouwers, H.J.H. (2009) Indoor Air Purification Using Heterogeneous Photocatalytic Oxidation. Part I: Experimental Study. Applied Catalysis B: Environmental, 92, 454-461.
http://dx.doi.org/10.1016/j.apcatb.2009.09.004
[49] Yu, Q.L. and Brouwers, H.J.H. (2013) Design of a Novel Photocatalytic Gypsum Plaster: With the Indoor Air Purification Property. Advanced Materials Research, 651,751-756.
http://dx.doi.org/10.4028/www.scientific.net/AMR.651.751
[50] Poon, C.S. and Cheung, E. (2007) NO Removal Efficiency of Photocatalytic Paving Blocks Prepared with Recycled Materials. Construction and Building Materials, 21, 1746-1753.
http://dx.doi.org/10.1016/j.conbuildmat.2006.05.018
[51] de Melo, J.V.S., Trichês, G., Gleize, P.J.P. and Villena, J. (2012) Development and Evaluation of the Efficiency of Photocatalytic Pavement Blocks in the Laboratory and after One Year in the Field. Construction and Building Materials, 37, 310-319.
http://dx.doi.org/10.1016/j.conbuildmat.2012.07.073
[52] Castillo, R., Koch, B., Ruiz, P. and Delmon, B. (1994) Influence of Preparation Methods on the Texture and Structure of Titania Supported on Silica. Journal of Materials Chemistry, 4, 903-906.
http://dx.doi.org/10.1039/jm9940400903
[53] Morrison, C. and Kiwi, J. (1989) Preparation and Characterization of TiO2-SiO2 Aerosil Colloidal Mixed Dispersions. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85, 1043-1048.
http://dx.doi.org/10.1039/f19898501043
[54] Hsu, W.P., Yu, R. and Matijevic, E. (1993) Paper Whiteners: I. Titania Coated Silica. Journal of Colloid and Interface Science, 156, 56-65.
http://dx.doi.org/10.1006/jcis.1993.1080
[55] Galan-Fereres, M., Mariscal, R., Alemany, L.J., Fierro, J.L.G. and Anderson, J.A. (1994) Ternary V-Ti-Si Catalysts and Their Behaviour in the CO + NO Reaction. Journal of the Chemical Society, Faraday Transactions, 90, 3711-3718.
http://dx.doi.org/10.1039/ft9949003711
[56] Galan-Fereres, M., Alemany, L.J., Mariscal, R., Banares, M.A., Anderson, J.A. and Fierro, J.L. (1995) Surface Acidity and Properties of Titania-Silica Catalysts. Chemistry of Materials, 7, 1342-1348.
http://dx.doi.org/10.1021/cm00055a011
[57] Choi, H.H., Park, J. and Singh, R.K. (2005) Nanosized Titania Encapsulated Silica Particles Using an Aqueous TiCl4 Solution. Applied Surface Science, 240, 7-12.
http://dx.doi.org/10.1016/j.apsusc.2004.06.147
[58] Sun, Z., Bai, C., Zheng, S., Yang, X. and Frost, R.L. (2013) A Comparative Study of Different Porous Amorphous Silica Minerals Supported TiO2 Catalysts. Applied Catalysis A: General, 458, 103-110.
http://dx.doi.org/10.1016/j.apcata.2013.03.035
[59] Srinivasan, S., Datye, A.K., Hampden-Smith, M., Wachs, I.E., Deo, G., Jehng, J.M., Turek, A.M. and Peden, C.H.F. (1991) The Formation of Titanium Oxide Monolayer Coatings on Silica Surfaces. Journal of Catalysis, 131, 260-275.
http://dx.doi.org/10.1016/0021-9517(91)90343-3
[60] Srinivasan, S., Datye, A.K., Smith, M.H. and Peden, C.H.F. (1994) Interaction of Titanium Isopropoxide with Surface Hydroxyls on Silica. Journal of Catalysis, 145, 565-573.
http://dx.doi.org/10.1006/jcat.1994.1068
[61] Mariscal, R., Palacios, J.M., Galan-Fereres, M. and Fierro, J.L.G. (1994) Incorporation of Titania into Preshaped Silica Monolith Structures. Applied Catalysis A: General, 116, 205-219.
http://dx.doi.org/10.1016/0926-860X(94)80290-4
[62] Salama, T.M., Tanaka, T., Yamaguchi, T. and Tanabe, K. (1990) EXAFS/XANES Study of Titanium Oxide Supported on SiO2: A Structural Consideration on the Amorphous State. Surface Science, 227, L100-L104.
http://dx.doi.org/10.1016/0039-6028(90)90379-m
[63] Ellestad, O.H. and Blindheim, U. (1985) Reactions of Titanium Tetrachloride with Silica Gel Surfaces. Journal of Molecular Catalysis, 33, 275-287.
http://dx.doi.org/10.1016/0304-5102(85)85001-X
[64] Aronson, B.J., Blanford, C.F. and Stein, A. (1997) Solution-Phase Grafting of Titanium Dioxide onto the Pore Surface of Mesoporous Silicates: Synthesis and Structural Characterization. Chemistry of Materials, 9, 2842-2851.
http://dx.doi.org/10.1021/cm970180k
[65] Huang, Y.Y., Zhao, B.Y. and Xie, Y.C. (1998) A Novel Way to Prepare Silica Supported Sulfated Titania. Applied Catalysis A: General, 171, 65-73.
http://dx.doi.org/10.1016/S0926-860X(98)00071-4
[66] Morrow, B.A. and McFarlan, A.J. (1990) Chemical Reactions at Silica Surfaces. Journal of Non-Crystalline Solids, 120, 61-71.
http://dx.doi.org/10.1016/0022-3093(90)90191-N
[67] Haukka, S., Lakomaa, E.L. and Root, A. (1993) An IR and NMR Study of the Chemisorption of Titanium Tetrachloride on Silica. The Journal of Physical Chemistry, 97, 5085-5094.
http://dx.doi.org/10.1021/j100121a040
[68] Nakayama, T., Onisawa, K., Fuyama, M. and Hanazono, M. (1992) TiO2/SiO2 Multilayer Insulating Films for ELDs. Journal of the Electrochemical Society, 139, 1204-1206.
http://dx.doi.org/10.1149/1.2069367
[69] Lassaletta, G., Fernandez, A., Espinos, J.P. and Gonzalez-Elipe, A.R. (1995) Spectroscopic Characterization of Quantum-Sized TiO2 Supported on Silica: Influence of Size and TiO2-SiO2 Interface Composition. The Journal of Physical Chemistry, 99, 1484-1490.
http://dx.doi.org/10.1021/j100005a019
[70] Nakayama, T. (1994) Structure of TiO2/SiO2 Multilayer Films. Journal of the Electrochemical Society, 141, 237-241.
http://dx.doi.org/10.1149/1.2054690
[71] Hayashi, T., Yamada, T. and Saito, H. (1983) Preparation of Titania-Silica Glasses by the Gel Method. Journal of Materials Science, 18, 3137-3142.
http://dx.doi.org/10.1007/BF00700798
[72] Li, Z., Hou, B., Xu, Y., Wu, D., Sun, Y., Hu, W. and Deng, F. (2005) Comparative Study of Sol-Gel-Hydrothermal and Sol-Gel Synthesis of Titania-Silica Composite Nanoparticles. Journal of Solid State Chemistry, 178, 1395-1405.
http://dx.doi.org/10.1016/j.jssc.2004.12.034
[73] Fu, X. and Qutubuddin, S. (2001) Synthesis of Titania-Coated Silica Nanoparticles Using a Nonionic Water-in-Oil Microemulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 179, 65-70.
http://dx.doi.org/10.1016/S0927-7757(00)00723-8
[74] Liu, Z.F., Tabora, J. and Davis, R.J. (1994) Relationships between Microstructure and Surface Acidity of Ti-Si Mixed Oxide Catalysts. Journal of Catalysis, 149, 117-126.
http://dx.doi.org/10.1006/jcat.1994.1277
[75] Mine, E., Hirose, M., Kubo, M., Kobayashi, Y., Nagao, D. and Konno, M. (2006) Synthesis of Submicron-Sized Titania-Coated Silica Particles with a Sol-Gel Method and Their Application to Colloidal Photonic Crystals. Journal of Sol-Gel Science and Technology, 38, 91-95.
http://dx.doi.org/10.1007/s10971-006-5855-y
[76] Lee, D.W., Ihm, S.K. and Lee, K.H. (2005) Mesostructure Control Using a Titania-Coated Silica Nanosphere Framework with Extremely High Thermal Stability. Chemistry of Materials, 17, 4461-4467.
http://dx.doi.org/10.1021/cm050485w
[77] Lee, J.W., Kong, S., Kim, W.S. and Kim, J. (2007) Preparation and Characterization of SiO2/TiO2 Core-Shell Particles with Controlled Shell Thickness. Materials Chemistry and Physics, 106, 39-44.
http://dx.doi.org/10.1016/j.matchemphys.2007.05.019
[78] Do Kim, K., Bae, H.J. and Kim, H.T. (2003) Synthesis and Characterization of Titania-Coated Silica Fine Particles by Semi-Batch Process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 224, 119-126.
http://dx.doi.org/10.1016/S0927-7757(03)00252-8
[79] Rupp, W., Hüsing, N. and Schubert, U. (2002) Preparation of Silica-Titania Xerogels and Aerogels by Sol-Gel Processing of New Single-Source Precursors. Journal of Materials Chemistry, 12, 2594-2596.
http://dx.doi.org/10.1039/b204956b
[80] Doolin, P.K., Alerasool, S., Zalewski, D.J. and Hoffman, J.F. (1994) Acidity Studies of Titania-Silica Mixed Oxides. Catalysis Letters, 25, 209-223.
http://dx.doi.org/10.1007/BF00816302
[81] Hanprasopwattana, A., Srinivasan, S., Sault, A.G. and Datye, A.K. (1996) Titania Coatings on Monodisperse Silica Spheres (Characterization Using 2-Propanol Dehydration and TEM). Langmuir, 12, 3173-3179.
http://dx.doi.org/10.1021/la950808a
[82] Walters, J.K., Rigden, J.S., Dirken, P.J., Smith, M.E., Howells, W.S. and Newport, R.J. (1997) An Atomic-Scale Study of the Role of Titanium in TiO2:SiO2 Sol-Gel Materials. Chemical Physics Letters, 264, 539-544.
http://dx.doi.org/10.1016/S0009-2614(96)01359-0
[83] Klein, S., Weckhuysen, B.M., Martens, J.A., Maier, W.F. and Jacobs, P.A. (1996) Homogeneity of Titania-Silica Mixed Oxides: On UV-DRS Studies as a Function of Titania Content. Journal of Catalysis, 163, 489-491.
http://dx.doi.org/10.1006/jcat.1996.0350
[84] Liu, G., Liu, Y., Yang, G., Li, S., Zu, Y., Zhang, W. and Jia, M. (2009) Preparation of Titania-Silica Mixed Oxides by a Sol-Gel Route in the Presence of Citric Acid. The Journal of Physical Chemistry C, 113, 9345-9351.
http://dx.doi.org/10.1021/jp900577c
[85] Fujishima, A., Rao, T.N. and Tryk, D.A. (2000) Titanium Dioxide Photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1, 1-21.
http://dx.doi.org/10.1016/S1389-5567(00)00002-2
[86] Carp, O., Huisman, C.L. and Reller, A. (2004) Photoinduced Reactivity of Titanium Dioxide. Progress in Solid State Chemistry, 32, 33-177.
http://dx.doi.org/10.1016/j.progsolidstchem.2004.08.001
[87] Kitano, M., Matsuoka, M., Ueshima, M. and Anpo, M. (2007) Recent Developments in Titanium Oxide-Based Photocatalysts. Applied Catalysis A: General, 325, 1-14.
http://dx.doi.org/10.1016/j.apcata.2007.03.013
[88] Gaya, U.I. and Abdullah, A.H. (2008) Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9, 1-12.
http://dx.doi.org/10.1016/j.jphotochemrev.2007.12.003
[89] Macwan, D.P., Dave, P.N. and Chaturvedi, S. (2011) A Review on Nano-TiO2 Sol-Gel Type Syntheses and Its Applications. Journal of Materials Science, 46, 3669-3686.
http://dx.doi.org/10.1007/s10853-011-5378-y
[90] Simonsen, M.E., Li, Z. and Søgaard, E.G. (2009) Influence of the OH Groups on the Photocatalytic Activity and Photoinduced Hydrophilicity of Microwave Assisted Sol-Gel TiO2 Film. Applied Surface Science, 255, 8054-8062.
http://dx.doi.org/10.1016/j.apsusc.2009.05.013
[91] Yu, J., Jimmy, C.Y., Ho, W. and Jiang, Z. (2002) Effects of Calcination Temperature on the Photocatalytic Activity and Photo-Induced Super-Hydrophilicity of Mesoporous TiO2 Thin Films. New Journal of Chemistry, 26, 607-613.
http://dx.doi.org/10.1039/b200964a
[92] Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A. and Watanabe, T. (1997) Light-Induced Amphiphilic Surfaces. Nature, 388, 431-432.
http://dx.doi.org/10.1038/41233
[93] Mezhenny, S., Maksymovych, P., Thompson, T.L., Diwald, O., Stahl, D., Walck, S.D. and Yates, J.T. (2003) STM Studies of Defect Production on the TiO2(110)-(1×1) and TiO2(110)-(1×2) Surfaces Induced by UV Irradiation. Chemical Physics Letters, 369, 152-158.
http://dx.doi.org/10.1016/S0009-2614(02)01997-8
[94] White, J.M., Szanyi, J. and Henderson, M.A. (2003) The Photon-Driven Hydrophilicity of Titania: A Model Study Using TiO2(110) and Adsorbed Trimethyl Acetate. The Journal of Physical Chemistry B, 107, 9029-9033.
http://dx.doi.org/10.1021/jp0345046
[95] Miyauchi, M., Nakajima, A., Fujishima, A., Hashimoto, K. and Watanabe, T. (2000) Photoinduced Surface Reactions on TiO2 and SrTiO3 Films: Photocatalytic Oxidation and Photoinduced Hydrophilicity. Chemistry of Materials, 12, 3-5.
http://dx.doi.org/10.1021/cm990556p
[96] Luttrell, T., Halpegamage, S., Tao, J., Kramer, A., Sutter, E. and Batzill, M. (2014) Why Is Anatase a Better Photocatalyst than Rutile?—Model Studies on Epitaxial TiO2 Films. Scientific Reports, 4, Article No.: 4043.
http://dx.doi.org/10.1038/srep04043
[97] Mattioli, G., Filippone, F., Alippi, P. and Bonapasta, A.A. (2008) Ab Initio Study of the Electronic States Induced by Oxygen Vacancies in Rutile and Anatase TiO2. Physical Review B, 78, Article ID: 241201.
http://dx.doi.org/10.1103/PhysRevB.78.241201
[98] Xu, M., Gao, Y., Moreno, E.M., Kunst, M., Muhler, M., Wang, Y., Idriss, H. and Wöll, C. (2011) Photocatalytic Activity of Bulk TiO2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy. Physical Review Letters, 106, Article ID: 138302.
http://dx.doi.org/10.1103/PhysRevLett.106.138302
[99] Ohtani, B., Ogawa, Y. and Nishimoto, S.I. (1997) Photocatalytic Activity of Amorphous-Anatase Mixture of Titanium (IV) Oxide Particles Suspended in Aqueous Solutions. The Journal of Physical Chemistry B, 101, 3746-3752.
http://dx.doi.org/10.1021/jp962702+
[100] Bickley, R.I., Gonzalez-Carreno, T., Lees, J.S., Palmisano, L. and Tilley, R.J. (1991) A Structural Investigation of Titanium Dioxide Photocatalysts. Journal of Solid State Chemistry, 92, 178-190.
http://dx.doi.org/10.1016/0022-4596(91)90255-G
[101] Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M. and Sokol, A.A. (2013) Band Alignment of Rutile and Anatase TiO2. Nature Materials, 12, 798-801.
http://dx.doi.org/10.1038/nmat3697
[102] Mogyorósi, K., Farkas, A., Dékány, I., Ilisz, I. and Dombi, A. (2002) TiO2-Based Photocatalytic Degradation of 2-Chlorophenol Adsorbed on Hydrophobic Clay. Environmental Science & Technology, 36, 3618-3624.
http://dx.doi.org/10.1021/es015843k
[103] Mogyorosi, K., Dekany, I. and Fendler, J.H. (2003) Preparation and Characterization of Clay Mineral Intercalated Titanium Dioxide Nanoparticles. Langmuir, 19, 2938-2946.
http://dx.doi.org/10.1021/la025969a
[104] Kun, R., Mogyorósi, K. and Dékány, I. (2006) Synthesis and Structural and Photocatalytic Properties of TiO2/Mont-morillonite Nanocomposites. Applied Clay Science, 32, 99-110.
http://dx.doi.org/10.1016/j.clay.2005.09.007
[105] Kibanova, D., Trejo, M., Destaillats, H. and Cervini-Silva, J. (2009) Synthesis of Hectorite-TiO2 and Kaolinite-TiO2 Nanocomposites with Photocatalytic Activity for the Degradation of Model Air Pollutants. Applied Clay Science, 42, 563-568.
http://dx.doi.org/10.1016/j.clay.2008.03.009
[106] Matthews, R.W. (1991) Photooxidative Degradation of Coloured Organics in Water Using Supported Catalysts. TiO2 on Sand. Water Research, 25, 1169-1176.
http://dx.doi.org/10.1016/0043-1354(91)90054-T
[107] Matthews, R.W. and McEvoy, S.R. (1992) Photocatalytic Degradation of Phenol in the Presence of Near-UV Illuminated Titanium Dioxide. Journal of Photochemistry and Photobiology A: Chemistry, 64, 231-246.
http://dx.doi.org/10.1016/1010-6030(92)85110-G
[108] European Commission (2007) Reference Document on Best Available Techniques for the Manufacture of Large Volume Inorganic Chemicals—Solids and Other Industry
[109] Iler, R.K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York.
[110] Stöber, W., Fink, A. and Bohn, E. (1968) Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range. Journal of Colloid and Interface Science, 26, 62-69.
http://dx.doi.org/10.1016/0021-9797(68)90272-5
[111] Lazaro, A., Brouwers, H.J.H., Quercia, G. and Geus, J.W. (2012) The Properties of Amorphous Nano-Silica Synthesized by the Dissolution of Olivine. Chemical Engineering Journal, 211, 112-121.
http://dx.doi.org/10.1016/j.cej.2012.09.042
[112] Lazaro, A., Van de Griend, M.C., Brouwers, H.J.H. and Geus, J.W. (2013) The Influence of Process Conditions and Ostwald Ripening on the Specific Surface Area of Olivine Nano-Silica. Microporous and Mesoporous Materials, 181, 254-261.
http://dx.doi.org/10.1016/j.micromeso.2013.08.006
[113] Lazaro, A., Quercia, G., Brouwers, H. and Geus, J. (2013) Synthesis of a Green Nano-Silica Material Using Beneficiated Waste Dunites and Its Application in Concrete. World Journal of Nano Science and Engineering, 3, 41-51.
http://dx.doi.org/10.4236/wjnse.2013.33006
[114] Lazaro, A., Benac-Vegas, L., Brouwers, H.J.H., Geus, J.W. and Bastida, J. (2015) The Kinetics of the Olivine Dissolution under the Extreme Conditions of Nano-Silica Production. Applied Geochemistry, 52, 1-15.
http://dx.doi.org/10.1016/j.apgeochem.2014.10.015
[115] Gu, W. and Tripp, C.P. (2005) Role of Water in the Atomic Layer Deposition of TiO2 on SiO2. Langmuir, 21, 211-216.
http://dx.doi.org/10.1021/la047811r
[116] Sugimoto, T., Zhou, X. and Muramatsu, A. (2002) Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel-Sol Method: 1. Solution Chemistry of Ti(OH)n(4-n)+ Complexes. Journal of Colloid and Interface Science, 252, 339-346.
http://dx.doi.org/10.1006/jcis.2002.8454
[117] Lee, G.H. and Zuo, J.M. (2004) Growth and Phase Transformation of Nanometer-Sized Titanium Oxide Powders Produced by the Precipitation Method. Journal of the American Ceramic Society, 87, 473-479.
http://dx.doi.org/10.1111/j.1551-2916.2004.00473.x
[118] Wang, T.H., Navarrete-López, A.M., Li, S., Dixon, D.A. and Gole, J.L. (2010) Hydrolysis of TiCl4: Initial Steps in the Production of TiO2. The Journal of Physical Chemistry A, 114, 7561-7570.
http://dx.doi.org/10.1021/jp102020h
[119] Yoldas, B.E. (1986) Hydrolysis of Titanium Alkoxide and Effects of Hydrolytic Polycondensation Parameters. Journal of Materials Science, 21, 1087-1092.
http://dx.doi.org/10.1007/BF01117399
[120] Zhang, X.T., Sato, O., Taguchi, M., Einaga, Y., Murakami, T. and Fujishima, A. (2005) Self-Cleaning Particle Coating with Antireflection Properties. Chemistry of Materials, 17, 696-700.
http://dx.doi.org/10.1021/cm0484201
[121] Ryu, D.H., Kim, S.C., Koo, S.M. and Kim, D.P. (2003) Deposition of Titania Nanoparticles on Spherical Silica. Journal of Sol-Gel Science and Technology, 26, 489-493.
http://dx.doi.org/10.1023/A:1020791130557
[122] Bischoff, B.L. and Anderson, M.A. (1995) Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2). Chemistry of Materials, 7, 1772-1778.
http://dx.doi.org/10.1021/cm00058a004
[123] Mahshid, S., Askari, M. and Ghamsari, M.S. (2007) Synthesis of TiO2 Nanoparticles by Hydrolysis and Peptization of Titanium Isopropoxide Solution. Journal of Materials Processing Technology, 189, 296-300.
http://dx.doi.org/10.1016/j.jmatprotec.2007.01.040
[124] Takahashi, Y. and Matsuoka, Y. (1988) Dip-Coating of TiO2 Films Using a Sol Derived from Ti(O-i-Pr)4-Diethanolamine-H2O-i-PrOH System. Journal of Materials Science, 23, 2259-2266.
http://dx.doi.org/10.1007/BF01115798
[125] Kato, K., Tsuzuki, A., Taoda, H., Torii, Y., Kato, T. and Butsugan, Y. (1994) Crystal Structures of TiO2 Thin Coatings Prepared from the Alkoxide Solution via the Dip-Coating Technique Affecting the Photocatalytic Decomposition of Aqueous Acetic Acid. Journal of Materials Science, 29, 5911-5915.
http://dx.doi.org/10.1007/BF00366875
[126] Imoberdorf, G.E., Irazoqui, H.A., Cassano, A.E. and Alfano, O.M. (2005) Photocatalytic Degradation of Tetrachloroethylene in Gas Phase on TiO2 Films: A Kinetic Study. Industrial & Engineering Chemistry Research, 44, 6075-6085.
http://dx.doi.org/10.1021/ie049185z
[127] Negishi, N., Takeuchi, K. and Ibusuki, T. (1998) Preparation of the TiO2 Thin Film Photocatalyst by the Dip-Coating Process. Journal of Sol-Gel Science and Technology, 13, 691-694.
http://dx.doi.org/10.1023/A:1008640905357
[128] Negishi, N. and Takeuchi, K. (2001) Preparation of TiO2 Thin Film Photocatalysts by Dip Coating Using a Highly Viscous Solvent. Journal of Sol-Gel Science and Technology, 22, 23-31.
http://dx.doi.org/10.1023/A:1011204001482
[129] Kim, D.J., Hahn, S.H., Oh, S.H. and Kim, E.J. (2002) Influence of Calcination Temperature on Structural and Optical Properties of TiO2 Thin Films Prepared by Sol-Gel Dip Coating. Materials Letters, 57, 355-360.
http://dx.doi.org/10.1016/S0167-577X(02)00790-5
[130] Sonawane, R.S., Hegde, S.G. and Dongare, M.K. (2003) Preparation of Titanium (IV) Oxide Thin Film Photocatalyst by Sol-Gel Dip Coating. Materials Chemistry and Physics, 77, 744-750.
http://dx.doi.org/10.1016/S0254-0584(02)00138-4
[131] Daoud, W.A. and Xin, J.H. (2004) Low Temperature Sol-Gel Processed Photocatalytic Titania Coating. Journal of Sol-Gel Science and Technology, 29, 25-29.
http://dx.doi.org/10.1023/B:JSST.0000016134.19752.b4
[132] Crepaldi, E.L., Soler-Illia, G.J.D.A., Grosso, D., Cagnol, F., Ribot, F. and Sanchez, C. (2003) Controlled Formation of Highly Organized Mesoporous Titania Thin Films: From Mesostructured Hybrids to Mesoporous Nanoanatase TiO2. Journal of the American Chemical Society, 125, 9770-9786.
http://dx.doi.org/10.1021/ja030070g
[133] Kajihara, K., Nakanishi, K., Tanaka, K., Hirao, K. and Soga, N. (1998) Preparation of Macroporous Titania Films by a Sol-Gel Dip-Coating Method from the System Containing Poly(ethylene glycol). Journal of the American Ceramic Society, 81, 2670-2676.
http://dx.doi.org/10.1111/j.1151-2916.1998.tb02675.x
[134] Park, H.K., Kim, D.K. and Kim, C.H. (1997) Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4. Journal of the American Ceramic Society, 80, 743-749.
http://dx.doi.org/10.1111/j.1151-2916.1997.tb02891.x
[135] Jiang, X., Herricks, T. and Xia, Y. (2003) Monodispersed Spherical Colloids of Titania: Synthesis, Characterization, and Crystallization. Advanced Materials, 15, 1205-1209.
http://dx.doi.org/10.1002/adma.200305105
[136] Sun, J. and Gao, L. (2002) pH Effect on Titania-Phase Transformation of Precipitates from Titanium Tetrachloride Solutions. Journal of the American Ceramic Society, 85, 2382-2384.
http://dx.doi.org/10.1111/j.1151-2916.2002.tb00467.x
[137] Matthews, A. (1976) The Crystallization of Anatase and Rutile from Amorphous Titanium Dioxide under Hydrothermal Conditions. American Mineralogist, 61, 419-424.
[138] Nam, H.D., Lee, B.H., Kim, S.J., Jung, C.H., Lee, J.H. and Park, S. (1998) Preparation of Ultrafine Crystalline TiO2 Powders from Aqueous TiCl4 Solution by Precipitation. Japanese Journal of Applied Physics, 37, 4603-4608.
http://dx.doi.org/10.1143/JJAP.37.4603
[139] Pedraza, F. and Vazquez, A. (1999) Obtention of TiO2 Rutile at Room Temperature through Direct Oxidation of TiCl3. Journal of Physics and Chemistry of Solids, 60, 445-448.
http://dx.doi.org/10.1016/S0022-3697(98)00315-1
[140] Terabe, K., Kato, K., Miyazaki, H., Yamaguchi, S., Imai, A. and Iguchi, Y. (1994) Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide. Journal of Materials Science, 29, 1617-1622.
http://dx.doi.org/10.1007/BF00368935
[141] Sun, J., Gao, L. and Zhang, Q. (2003) Synthesizing and Comparing the Photocatalytic Properties of High Surface Area Rutile and Anatase Titania Nanoparticles. Journal of the American Ceramic Society, 86, 1677-1682.
http://dx.doi.org/10.1111/j.1151-2916.2003.tb03539.x
[142] Zhang, Q., Gao, L. and Guo, J. (2000) Effects of Calcination on the Photocatalytic Properties of Nanosized TiO2 Powders Prepared by TiCl4 Hydrolysis. Applied Catalysis B: Environmental, 26, 207-215.
http://dx.doi.org/10.1016/S0926-3373(00)00122-3
[143] Chen, J., Gao, L., Huang, J. and Yan, D. (1996) Preparation of Nanosized Titania Powder via the Controlled Hydrolysis of Titanium Alkoxide. Journal of Materials Science, 31, 3497-3500.
[144] Banfield, J. (1998) Thermodynamic Analysis of Phase Stability of Nanocrystalline Titania. Journal of Materials Chemistry, 8, 2073-2076.
http://dx.doi.org/10.1039/a802619j
[145] Yanagisawa, K. and Ovenstone, J. (1999) Crystallization of Anatase from Amorphous Titania Using the Hydrothermal Technique: Effects of Starting Material and Temperature. The Journal of Physical Chemistry B, 103, 7781-7787.
http://dx.doi.org/10.1021/jp990521c
[146] Bavykin, D.V., Dubovitskaya, V.P., Vorontsov, A.V. and Parmon, V.N. (2007) Effect of TiOSO4 Hydrothermal Hydrolysis Conditions on TiO2 Morphology and Gas-Phase Oxidative Activity. Research on Chemical Intermediates, 33, 449-464.
http://dx.doi.org/10.1163/156856707779238702
[147] Wang, C.C. and Ying, J.Y. (1999) Sol-Gel Synthesis and Hydrothermal Processing of Anatase and Rutile Titania Nanocrystals. Chemistry of Materials, 11, 3113-3120.
http://dx.doi.org/10.1021/cm990180f
[148] Penn, R.L. and Banfield, J.F. (1999) Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions: Insights from Titania. Geochimica et Cosmochimica Acta, 63, 1549-1557.
http://dx.doi.org/10.1016/S0016-7037(99)00037-X
[149] Zhang, H. and Banfield, J.F. (2002) Kinetics of Crystallization and Crystal Growth of Nanocrystalline Anatase in Nanometer-Sized Amorphous Titania. Chemistry of Materials, 14, 4145-4154.
http://dx.doi.org/10.1021/cm020072k
[150] Kumar, S.R., Suresh, C., Vasudevan, A.K., Suja, N.R., Mukundan, P. and Warrier, K.G.K. (1999) Phase Transformation in Sol-Gel Titania Containing Silica. Materials Letters, 38, 161-166.
http://dx.doi.org/10.1016/S0167-577X(98)00152-9
[151] Zhang, J., Hu, Y., Matsuoka, M., Yamashita, H., Minagawa, M., Hidaka, H. and Anpo, M. (2001) Relationship between the Local Structures of Titanium Oxide Photocatalysts and Their Reactivities in the Decomposition of NO. The Journal of Physical Chemistry B, 105, 8395-8398.
http://dx.doi.org/10.1021/jp012080e
[152] Yoneyama, H., Haga, S. and Yamanaka, S. (1989) Photocatalytic Activities of Microcrystalline Titania Incorporated in Sheet Silicates of Clay. The Journal of Physical Chemistry, 93, 4833-4837.
http://dx.doi.org/10.1021/j100349a031
[153] Caillol, S. (2011) Fighting Global Warming: The Potential of Photocatalysis against CO2, CH4, N2O, CFCs, Tropospheric O3, BC and Other Major Contributors to Climate Change. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12, 1-19.
http://dx.doi.org/10.1016/j.jphotochemrev.2011.05.002
[154] Tanabe, K., Sumiyoshi, T., Shibata, K., Kiyoura, T. and Kitagawa, J. (1974) A New Hypothesis Regarding the Surface Acidity of Binary Metal Oxides. Bulletin of the Chemical Society of Japan, 47, 1064-1066.
http://dx.doi.org/10.1246/bcsj.47.1064

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.