Optimization of the Implementation Process and Physical Properties of Cotton ( Gossipium hirsutum ) and Kenaf ( Hibiscus cannabinus L.) Wooden Chipboard

Abstract Full-Text HTML XML Download Download as PDF (Size:3725KB) PP. 803-815
DOI: 10.4236/eng.2015.712070    4,208 Downloads   4,684 Views  

ABSTRACT

The present study aims at valorizing two residues types of the foodless vegetable biomass which are abundant and very pollutant in Burkina Faso. To do it, first we try to identify the optimal values of chipboard elaboration parameters with kenaf and cotton stems by using a natural binder (the bone glue). Next we proceed to the elaboration of two panels types with optimized elaboration parameters. Besides we determine mechanical and thermal characteristics of elaborated panels with a view of an indoor thermal insulation application. Also it becomes necessary for us to determine by experimenting the thermal conductivity, Young’s modulus, Coulomb’s modulus, and the water inflation rate, taking into account some elaboration parameters on one hand and the correlation between mechanical and thermal properties on the other hand. Finally, the obtained results are compared with the panels properties values required by ANSI A 208.1-1999 standard.

Cite this paper

Soulama, S. , Atcholi, K. , Naon, B. , Kadja, K. and Sanda, K. (2015) Optimization of the Implementation Process and Physical Properties of Cotton ( Gossipium hirsutum ) and Kenaf ( Hibiscus cannabinus L.) Wooden Chipboard. Engineering, 7, 803-815. doi: 10.4236/eng.2015.712070.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Youngquist, J.A., Myers, G.C. and Murmanis, L.L. (1987) Resin Distribution in Hardboard: Evaluated by Internal Bond Strength and Fluorescence Microscopy. Wood and Fiber Science, 19, 215-224.
[2] Youngquist, J.A., English, B.E., Scharmer, R.C., Chow, P. and Shook, S. (1994) Literature Review on Use of Nonwood Plant Fibers for Building Materials and Panels. US Government Printing Office, 146 p.
[3] Nenonene, A. (2009) Elaboration et caractérisation mécanique de panneaux de particules de tige de kénaf et de bioad-hésifs à base de colle d’os. de tannin ou de mucilage. Thèse de Doctorat. Institut National Polytechnique de Toulouse, Sciences des Agro-Ressources.
[4] Chow, P., Bagby, M.O. and Youngquist, J.A. (1978) Furniture Panels Made from Kenaf Stalks, Wood Waste, and Selected Crop Fiber Residues. Proceedings of the 4th Annual International Kenaf Association Conference, Biloxi, 5-7 February 1992, 28.
[5] Malone, P., et al. (2006) Freeform Fabrication of Ionomeric Polymer-Metal Composite Actuators. Rapid Prototyping Journal, 12, 244-253.
http://dx.doi.org/10.1108/13552540610707004
[6] Morvan, C., et al. (2003) Building Flax Fibers: More than One Brick in the Walls. Plant Physiology and Biochemistry, 41, 935-944.
http://dx.doi.org/10.1016/j.plaphy.2003.07.001
[7] Rigal, L. and Marechal, V. (2002) Mise au point de nouvelles colles d’origine végétale en particulier pour la production de composites à base de bois. Laboratoire de chimie Agroindustrielle_ENSIACET_INPT/INRA/ADEME. Toulouse.
[8] Kadja, K. (2011) Elaboration de panneaux de particules en Gossypium herbaceums (cotonnier) et en Hibiscus can- nabinus (kénaf) et caractérisation mécanique et thermique. Thèse de Doctorat, Université de Lomé.
[9] Spearing, M., et al. (1994) The Physics and Mechanics of Fibre-Reinforced Brittle Matrix Composites. Journal of Materials Science, 29, 3857-3896.
http://dx.doi.org/10.1007/BF00355946
[10] Misnon, M.I., Islam, M.M., Epaarachchi, J.A. and Lau, K.-T. (2014) Potentiality of Utilising Natural Textile Materials for Engineering Composites Applications. Materials and Design, 59, 359-368.
http://dx.doi.org/10.1016/j.matdes.2014.03.022

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.