Isolation and Identification of Fungal Endophytes from Grasses along the Oregon Coast


Fungal endophytes have been shown to improve abiotic and biotic stress response in plants. Grasses growing along the Oregon coast are exposed to harsh conditions and may harbor endophytes that enable them to survive and grow under these conditions. Endophytic fungi were isolated from thirty-four grass plants representing eight different grass species at four different locations along the Oregon coast. The ITS-1, 5.8S, and ITS-2 regions of each isolate were amplified, sequenced, and used to perform a BLAST search against the nucleotide database collection at National Center for Biotechnology Information. One-hundred-eleven different fungal isolates were classified into thirtynine genera with two isolates that did not show a match greater than 95%. These endophytes will be investigated to determine their potential for improving the adaptability of grasses and other crop plants to grow in diverse environments where they are subjected to multiple biotic and abiotic stresses.

Share and Cite:

Martin, R. and Dombrowski, J. (2015) Isolation and Identification of Fungal Endophytes from Grasses along the Oregon Coast. American Journal of Plant Sciences, 6, 3216-3230. doi: 10.4236/ajps.2015.619313.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Wilson, D. (1995) Endophyte: The Evolution of a Term and Clarification of Its Use and Definition. Oikos, 73, 274-276.
[2] Radic, N. and Strukelj, B. (2012) Endophytic Fungi—The Treasure Chest of Antibacterial Substances. Phytomedicine, 19, 1270-1284.
[3] Bacon, C.W., Richardson, M.D. and White Jr., J.F. (1997) Modification and Uses of Endophyte-Enhanced Turfgrasses: A Role for Molecular Technology. Crop Science, 37, 1415-1425.
[4] Malinowski, D.P. and Belesky, D.P. (2000) Adaptations of Endophyte-Infected Cool-Season Grasses to Environmental Stresses: Mechanisms of Drought and Mineral Stress Tolerance. Crop Science, 40, 923-940.
[5] Rodriguez, R.J., Redman, R.S. and Henson, J.M. (2004) The Role of Fungal Symbioses in the Adaptation of Plants to High Stress Environments. Mitigation and Adaptation Strategies for Global Change, 9, 216-272.
[6] Bacon, C.W., Porter, J.K., Robbins, J.D. and Luttrell, E.S. (1977) Epichloë typhina from Tall Fescue Grasses. Applied and Environmental Microbiology, 34, 576-581.
[7] Lyons, P.C., Plattner, R.D. and Bacon, C.W. (1986) Occurrence of Peptide and Clavine Ergot Alkaloids in Tall Fescue. Science, 232, 487-489.
[8] Saikkonen, K., Gundel, P.E. and Helander, M. (2013) Chemical Ecology Mediated by Fungal Endophytes in Grasses. Journal of Chemical Ecology, 39, 962-968.
[9] Schardl, C.L., Leuchtmann, A. and Spiering, M.J. (2004) Symbioses of Grasses with Seedborne Fungal Endophytes. Annual Review of Plant Biology, 55, 315-340.
[10] Bush, L.P., Wilkinson, H.H. and Schardl, C.L. (1997) Bioprotective Alkaloids of Grass-Fungal Endophyte Symbioses. Plant Physiology, 114, 1-7.
[11] Clay, K. (1988) Fungal Endophytes of Grasses: A Defensive Mutualism between Plants and Fungi. Ecology, 69, 10-16.
[12] Clay, K. and Schardl, C.L. (2002) Evolutionary Origins and Ecological Consequences of Endophyte Symbiosis with Grasses. American Naturalist, 160, S99-S127.
[13] Saikkonen, K., Gundel, P.E. and Helander, M. (2013) Chemical Ecology Mediated by Fungal Endophytes in Grasses. Journal of Chemical Ecology, 39, 962-968.
[14] Schardl, C.L., Young, C.A., Faulkner, J.R., Florea, S. and Pan, J. (2012) Chemotypic Diversity of Epichloae Fungal Symbionts of Grasses. Fungal Ecology, 5, 331-344.
[15] Blankenship, J.D., Spiering, M.J., Wilkinson, H.H., Fannin, F.F., Bush, L.P. and Schardl, C.L. (2001) Production of Loline Alkaloids by the Grass Endophyte, Neotyphodium uncinatum, in Defined Media. Phytochemistry, 58, 395-401.
[16] Clement, S.L., Kaiser, W.J. and Eichenseer, H. (1994) Acremonium Endophytes in Germplasms of Major Grasses and Their Utilization for Insect Resistance. In: Bacon, C.W. and White, J.F., Eds., Biotechnology of Endophytic Fungi of Grasses, CRC Press, Boca Raton, 185-199.
[17] Siegel, M.R., Dahlaman, D.L. and Bush, L.P. (1989) The Role of Endophytic Fungi in Grasses: New Approaches to Biological Control of Pests. In: Leslie, A.R. and Metcalf, R.L., Eds., Integrated Pest Management for Turfgrass and Ornamentals, USA-EPA, Washington DC, 169-186.
[18] Rostás, M., Cripps, M.G. and Silcock, P. (2015) Aboveground Endophyte Affects Root Volatile Emission and Host Plant Selection of a Belowground Insect. Oecologia, 177, 487-497.
[19] West, C.P., Izekor, W., Oosterhuis, D.M. and Robbins, R.T. (1988) The Effect of Acremonium coenophialum on the Growth and Nematode Infestation of Tall Fescue. Plant Soil, 112, 3-6.
[20] Kimmons, C.A., Gwinn, K.D. and Bernard, E.C. (1990) Nematode Reproduction on Endophyte-Infected and Endophyte-Free Tall Fescue. Plant Disease, 74, 757-761.
[21] Gibert, A., Volaire, F., Barre, P. and Hazard, L. (2012) A Fungal Endophyte Reinforces Population Adaptive Differentiation in its Host Grass Species. New Phytologist, 194, 561-571.
[22] Tanaka, A., Christensen, M.J., Takemoto, D., Park, P. and Scott, B. (2006) Reactive Oxygen Species Play a Role in Regulating a Fungus-Perennial Ryegrass Mutualistic Interaction. Plant Cell, 18, 1052-1066.
[23] White, J.F. and Torres, M.S. (2010) Is Plant Endophyte-Mediated Defensive Mutualism the Result of Oxidative Stress Protection? Physiologia Plantarum, 138, 440-446.
[24] Hamilton, C.E., Gundel, P.E., Helander, M. and Saikkonen, K. (2012) Endophytic Mediation of Reactive Oxygen Species and Antioxidant Activity in Plants: A Review. Fungal Diversity, 54, 1-10.
[25] Rodriguez, R.J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y.-O. and Redman, R.S. (2008) Stress Tolerance in Plants via Habitat-Adapted Symbiosis. International Society for Microbial Ecology Journal, 2, 404-416.
[26] Redman, R.S., Sheehan, K.B., Stout, R.G., Rodriguez, R.J. and Henson, J.M. (2002) Thermotolerance Generated by Plant/Fungal Symbiosis. Science, 298, 1581.
[27] Redman, R.S., Kim, Y.O., Woodward, C.J.D.A., Greer, C., Espino, L., Doty, S.L. and Rodriguez, R.J. (2011) Increased Fitness of Rice Plants to Abiotic Stress via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change. PLoS ONE, 6, e14823.
[28] Verma, S., Varma, A., Rexer, K.-H., Hassel, A., Kost, G., Sarabhoy, A., Bisen, P., Bütenhorn, B. and Franken, P. (1998) Piriformospora indica, gen. et sp.nov., a New Root-Colonizing Fungus. Mycologia, 90, 896-903.
[29] Varma, A., Verma, S., Sudha, Sahay, N., Bütehorn, B. and Franken, P. (1999) Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte. Applied and Environmental Microbiology, 65, 2741-2744.
[30] Fakhro, A., Andrade-Linares, D.R., von Bargen, S., Bandte, M., Buttner, C., Grosch, R., Schwarz, D. and Franken, P. (2010) Impact of Piriformospora indica on Tomato Growth and on Interaction with Fungal and Viral Pathogens. Mycorrhiza, 20, 191-200.
[31] Prasad, R., Kamal, S., Sharma, P.K., Oelmüller, R. and Varma, A. (2013) Root Endophyte Piriformospora indica DSM 11827 Alters Plants Morphology, Enhances Biomass and Antioxidant Activity of Medicinal Plant Bacopa monniera. Journal of Basic Microbiology, 53, 1016-1024.
[32] Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R., Neumann, C., von Wettstein, D., Franken, P. and Kogel, K.-H. (2005) The Endophytic Fungus Piriformospora indica Reprograms Barley to Salt-Stress Tolerance, Disease Resistance, and Higher Yield. Proceedings of the National Academy of Sciences of the United States of America, 102, 13386-13391.
[33] Sun, C., Shao, Y., Vahabi, K., Lu, J., Bhattacharya, S., Dong, S., Yeh, K.W., Sherameti, I., Lou, B., Baldwin, I.T. and Oelmüller, R. (2014) The Beneficial Fungus Piriformospora indica Protects Arabidopsis from Verticillium dahlia Infection by Downregulation Plant Defense Responses. BMC Plant Biology, 14, 268.
[34] Sherameti, I., Tripathi, S., Varma, A. and Oelmüller, R. (2008) The Root-Colonizing Endophyte Pirifomospora indica Confers Drought Tolerance in Arabidopsis by Stimulating the Expression of Drought Stress-Related Genes in Leaves. Molecular Plant-Microbe Interactions, 21, 799-807.
[35] Sun, C.A., Johnson, J.M., Cai, D., Sherameti, I., Oelmüller, R. and Lou, B. (2010) Piriformospora indica Confers Drought Tolerance in Chinese Cabbage Leaves by Stimulating Antioxidant Enzymes, the Expression of Drought-Related Genes and the Plastid-Localized CAS Protein. Journal of Plant Physiology, 167, 1009-1017.
[36] Bajaj, R., Hu, W., Huang, Y.Y., Chen, S., Prasad, R., Varma, A. and Bushley, K.E. (2015) The Beneficial Root Endophyte Piriformospora indica Reduces Egg Density of the Soybean Cyst Nematode. Biological Control, 90, 193-199.
[37] Schäfer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kühnemann, J., Sonnewald, S., Sonnewald, U. and Kogel, K-H. (2009) Manipulation of Plant Innate Immunity and Gibberellins as Factor of Compatibility in the Mutualistic Association of Barley Roots with Piriformospora indica. Plant Journal, 59, 461-474.
[38] Schäfer, P., Pfiffi, S., Voll, L.M., Zajic, D., Chandler, P.M., Waller, F., Scholz, U., Pons-Kühnemann, J., Sonnewald, S., Sonnewald, U. and Kogel, K.-H. (2009) Phytohormones in Plant Root-Piriformospora indica Mutualism. Plant Signaling and Behavior, 4, 669-671.
[39] Baltruschat, H., Fodor, J., Harrach, B.D., Niemczyk, E., Barna, B., Gullner, G., Janeczko, A., Kogel, K.H., Schäfer, P., Schwarczinger, I., Zuccaro, A. and Skoczowski, A. (2008) Salt Tolerance of Barley Induced by the Root Endophyte Piriformospora indica Is Associated with a Strong Increase in Antioxidants. New Phytologist, 180, 501-510.
[40] Vadassery, J., Tripathi, S., Prasad, R., Varma, A. and Oelmüller, R. (2009) Monodehydroascorbate Reductase 2 and Dehydroascorbate Reductase 5 Are Crucial for a Mutualistic Interaction between Piriformospora indica and Arabidopsis. Journal of Plant Physiology, 166, 1263-1274.
[41] Camehl, I., Drzewiecki, C., Vadassery, J., Shahollari, B., Sherameti, I., Forzani, C., Munnik, T., Hirt, H. and Oelmüller, R. (2011) The OXI1 Kinase Pathway Mediates Piriformospora indica-Induced Growth Promotion in Arabidopsis. PLoS Pathogens, 7, e1002051.
[42] Bagheri, A.A., Saadatmand, S., Niknam, V., Nejadsatari, T. and Babaeizad, V. (2013) Effect of Endophytic Fungus, Piriformospora indica, on Growth and Activity of Antioxidant Enzymes of Rice (Oryza sativa L.) Under Salinity Stress. International Journal of Advanced Biological and Biomedical Research, 1, 1337-1350.
[43] Varma, A. Sree, K.S., Arora, M., Bajaj, R., Prasad, R. and Kharkwal, A.C. (2014) Functions of Novel Symbiotic Fungus Piriformospora indica. Proceedings of the Indian National Science Academy, 80, 429-441.
[44] Schulz, B., Wanke, U., Draeger, S. and Aust, H.J. (1993) Endophytes from Herbaceous Plants and Shrubs, Effectiveness of Surface Sterilization Methods. Mycological Research, 97, 1447-1450.
[45] Saitoh, K., Togashi, K., Arie, T. and Teraoka, T. (2006) A Simple Method for a Mini-Preparation of Fungal DNA. Journal of General Plant Pathology, 72, 348-350.
[46] White, T.J., Burns, T., Lee, S. and Taylor, J. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., Gelfand, D.H., Snisky, J.J. and White, T.J., Eds., PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, 315-322.
[47] Zheng, Z., Schwartz, S., Wagner, L. and Miller, W. (2000) A Greedy Algorithm for Aligning DNA Sequences. Journal of Computational Biology, 7, 203-214.
[48] Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R. and Schäffer, A.A. (2008) Database Indexing for Production MegaBLAST Searches. Bioinformatics, 24, 1757-1764.
[49] Mousa, W.K. and Raizada, M.N. (2013) The Diversity of Anti-Microbial Secondary Metabolites by Fungal Endophytes: An Interdisciplinary Perspective. Frontiers in Microbiology, 4, 65.
[50] Zhang, C., Ondeyka, J.G., Zink, D.L., Basilio, A., Vicente, F., Collado, J., Platas, G., Bills, G., Huber, J., Dorso, K., MOtyl, M., Byrne, K. and Singh, S.B. (2008) Isolation, Structure, and Antibacterial Activity of Phaeosphenone from a Phaeosphaeria sp. Discovered by Antisense Strategy. Journal of Natural Products, 71, 1304-1307.
[51] Giannetti, B.M., Steglich, W., Quack, W. and Oberwinkler, F. (1978) Antibiotics from Basidiomycetes, VI. Merulinic Acids A, B, and C, New Antibiotics from Merulius tremellosus and Phlebia radiate (Author’s Transl.). Zeitschrift für Naturforschung. Section C: Biosciences, 33, 807-816.
[52] Paul, N.C., Deng, J.X., Shin, K.S. and Yu, S.H. (2012) Molecular and Morphological Characterization of Endophytic Heterobasidion araucariae from Roots of Capsicum annuum L. in Korea. Mycobiology, 40, 85-90.
[53] Sonnenbichler, J., Bliestle, I.M., Peipp, H. and Holdenrieder, O. (1989) Secondary Fungal Metabolites and Their Biological Activities, I. Isolation of Antibiotic Compounds from Cultures of Heterobasidion annosum Synthesized in the Presence of Antagonistic Fungi or Host Plant Cells. Biological Chemistry Hoppe-Seyler, 370, 1295-1304.
[54] Doshida, J., Hasegawa, H., Onuki, H. and Shimidzu, N. (1996) Exophilin A, a New Antibiotic from a Marine Microorganism Exophiala pisciphila. Journal of Antibiotics, 49, 1105-1109.
[55] Bischoff, K.M., Leathers, T.D., Price, N.P.J. and Manitchotpisit, P. (2015) Liamocin Oil from Aureobasidium pullalans Has Antibacterial Activity with Specificity for Species of Streptococcus. Journal of Antibiotics, 68, 642-645.
[56] Chadhal, N., Mishra, M., Bajpal, K., Bajaj, R., Choudhary, D.K. and Varma, A. (2015) An Ecological Role of Fungal Endophytes to Ameliorate Plants Under Biotic Stress. Archives Microbiology, 197, 869-881.
[57] Kleczewski, N.M., Bauer, J.T., Bever, J.D., Clay, K. and Reynolds, H.L. (2012) A Survey of Endophytic Fungi of Switchgrass (Panicum virgatum) in the Midwest, and Their Putative Roles in Plant Growth. Fungal Ecology, 5, 521-529.
[58] Rai, M., Rathod, D., Agarkar, G., Dar, M., Brestic, M., Pastore, G.M. and Junior, M.R.M. (2014) Fungal Growth Promotor Endophytes: A Pragmatic Approach towards Sustainable Food and Agriculture. Symbiosis, 62, 63-79.
[59] Khan, S.A., Hamayun, M., Yoon, M., Kim, H.-Y., Suh, S.-Y., Hwang, S.-K., Kim, J.-M., Lee. I.-Y., Choo, Y.-S., Yoon, U.-H., Kong, W.-S., Lee, B.-M. and Kim, J.-G. (2008) Plant Growth Promotion and Penicillium citrinum. BMC Microbiology, 8, 231-240.
[60] You, Y.H., Yoon, H., Kang, S.M., Shin, J.H., Choo, Y.S., Lee, I.J., Lee, J.M. and Kim, J.G. (2012) Fungal Diversity and Plant Growth Promotion of Endophytic Fungi from Six Halophytes in Suncheon Bay. Journal Microbiology Biotechnology, 22, 1549-1556.
[61] Murphy, B.R., Doohan, F.M. and Hodkinson, T.R. (2015) Fungal Root Endophytes of a Wild Barley Species Increase Yield in a Nutrient-Stressed Barley Cultivar. Symbiosis, 65, 1-7.
[62] Murphy, B.R., Doohan, F.M. and Hodkinson, T.R. (2014) Persistent Fungal Root Endophytes Isolated from a Wild Barley Species Suppress Seed-Borne Infections in a Barley Cultivar. Biocontrol, 60, 281-292.
[63] Tunali, B., Shelby, R.A., Morgan-Jones, G. and Kodan, M. (2000). Endophytic Fungi and Ergot Alkaloids in Native Turkish Grasses. Phytoparasitica, 28, 375-377.
[64] Yeh, Y.H. and Kirschner, R. (2014) Sarocladium spinificis, a New Endophyte Species from the Coastal Grass Spinifex littoreus in Taiwan. Botanical Studies, 55, 25.
[65] Wicklow, D.T., Roth, S., Deyrup, S.T. and Gloer, J.B. (2005) A Protective Endophyte of Maize: Acremonium zeae Antibiotics Inhibitory to Aspergillus flavus and Fusarium verticillioides. Mycological Research, 109, 610-618.
[66] Poling, S.M., Wicklow, D.T., Rogers, K.D. and Gloer, J.B. (2008) Acremonium zeae, a Protective Endophyte of Maize, Produces Dihydroresorcylide and 7-Hydroxydihydroresorcylides. Journal of Agricultural and Food Chemistry, 56, 3006-3009.
[67] Muralidharan, K. and Rao, G.V. (1980) Outbreak of Sheath Rot on Rice. International Rice Research Newsletter, 5, 7.
[68] Schulz, B., Roemmert, A.K., Dammann, U., Aust, H.J. and Strack, D. (1999) The Endophyte-Host Interaction: A Balanced Antagonism? Mycological Research, 103, 1275-1383.
[69] Moricca, S. and Ragazzi, A. (2008) Fungal Endophytes in Mediterranean Oak Forests: A Lesson from Discula quercina. Phytopathology, 98, 380-386.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.