Development of a High-PerformanceFlexible Substrate for Flexible Electronics:Joining TAC Films and an Ultra-Thin Glassby Using TEOS-DAC Synthesized by the Sol-Gel Method

Abstract

A new flexible substrate for flexible electronics has been developed. The developed substrate consists of an ultra thin glass and TAC (triacethyl cellulose) film. An ultra thin glass and TAC film were joined with TEOS-DAC (TEOS: tetraethyl orthosilicate, DAC: diacethy cellulose) adhesive resin synthesized by sol-gel method by means of thermo-compression bonding. This substrate has high transparency in visible-light region (90%), high flexibility (torsion strength and bending strength) and high gas barrier characteristics due to an ultra thin glass. The newly-developed substrate is superior to the substrates fabricated with commercially available adhesive resin in the same way in characteristics of heat resistance, transparency and flexibility.

Share and Cite:

Ohishi, T. , Kawada, H. , Yoshida, T. and Ohwada, T. (2015) Development of a High-PerformanceFlexible Substrate for Flexible Electronics:Joining TAC Films and an Ultra-Thin Glassby Using TEOS-DAC Synthesized by the Sol-Gel Method. Materials Sciences and Applications, 6, 1100-1110. doi: 10.4236/msa.2015.612109.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] White, M.S., Kaitenbrunner, M.G., Istrokowacki, E.D., Gutnichenko, K., Kettlgruber, G., Graz, I., Aazou, S., Ulbricht, C., Egbe, D.A.M., Miron, M.C., Major, Z., Schaber, M.C., Sekitani, T., Someya, T., Bauer, S. and Sariciftci, N.S. (2013) Ultrathin Highly Flexible and Stretchable PLEDs. Nature Photonics, 7, 811-816.
http://dx.doi.org/10.1038/nphoton.2013.188
[2] Sekitani, T. and Someya, T. (2011) Human-Friendly Organic Integrated Circuit. Materials Today, 14, 398-407.
http://dx.doi.org/10.1016/S1369-7021(11)70184-5
[3] Sekitani, T., Zschieschang, U., Klauk, H. and Someya, T. (2010) Flexible Organic Transistor and Circuits with Extreme Bending Stability. Nature Materials, 9, 1015-1022.
http://dx.doi.org/10.1038/nmat2896
[4] Nomura, K., Ohta, H., Kamiya, T., Hirano, M. and Hosono, H. (2004) Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors. Nature, 432, 488-492.
http://dx.doi.org/10.1038/nature03090
[5] Katsuhara, M., Yagi, I., Yumoto, A., Noda, M., Hirai, N., Yasuda, R., Moriwaki, T., Ushikura, S., Imaoka, A., Urabe, T. and Nomoto, K. (2010) A Flexible OLED Display with an OTFT Backplane Made by Scalable Manufacturing Process. Journal of the Society for Information Display, 18, 399-404.
http://dx.doi.org/10.1889/JSID18.6.399
[6] Yagi, I., Hirai, N., Miyamoto, Y., Noda, M., Imaoka, A., Yoneda, N., Nomoto, K., Kasahara, J., Yumoto, A. and Urabe, T. (2008) A Flexible Full-Color AMOLED Display Driven by OTFTs. Journal of the Society for Information Display, 16, 15.
http://dx.doi.org/10.1889/1.2835023
[7] Uesaka, S., Yamaoka, R., Sasaki, T., Chida, A., Kawashima, S., Isa, T., Seo, S., et al. (2014) A 13.5-in. Quad-FHD Flexible CAAC-OS AMOLED Display with Long-Life OLED Device Structure. Journal of the Society for Information Display, 22, 603-612.
http://dx.doi.org/10.1002/jsid.275
[8] Kodaira, T., Hirabayashi, S., Komatsu, Y., Miyasaka, M., Kawai, H., Nebashi, S., Inoue, S. and Shimoda, T. (2008) A Flexible 3.1-in. Active-Matrix Electrophoretic Display with High Resolution and A Thickness of 100 μm. Journal of the Society for Information Display, 16, 107-111.
http://dx.doi.org/10.1889/1.2835015
[9] Wong, W.S. and Salleo, A. (2009) Flexible Electronics: Materials and Applications. Springer, New York.
http://dx.doi.org/10.1007/978-0-387-74363-9
[10] Sekitani, T. and Someya, T. (2010) Stretchable Large-Area Organic Electronics. Advanced Materials, 22, 2228-2246.
http://dx.doi.org/10.1002/adma.200904054
[11] MacDonald, M.A., Looney, M.K., MacKerron, R., Adam, R., Hashimoto, K. and Rakos, K. (2007) Latest Advances in Substrates for Flexible Electronics. Journal of the Society for Information Display, 15, 1075-1083.
http://dx.doi.org/10.1889/1.2825093
[12] Nakayama, H. and Ogawa, S., Eds. (2011) Advanced Thin-Film Processes for Gas-Barrier Films—Toward the Industrialization of High-Grade Gas-Barrier Films for Electronics. CMC, Tokyo.
[13] Brinker, C.J. and Schere, G.W. (1990) Sol-Gel Science. Academic Press, Boston.
[14] Seyferth, D. and Wiseman, G.H. (1984) High-Yield Synthesis of Si3N4/SiC Ceramic Materials by Pyrolysis of a Novel Polyorganosilazane. Journal of American Ceramic Society, 37, C132-C133.
[15] Kamiya, K., Oka, A.I., Nasu, H. and Hashimoto, T. (2000) Comparative Study of Structure of Silica Gels from Different Sources. Journal of Sol-Gel Science & Technology, 19, 495-499.
http://dx.doi.org/10.1023/A:1008720118475
[16] Iwamoto, Y., Sato, K., Kato, T., Inada, T. and Kubo, Y. (2005) A Hydrogen-Perselective Amorphous Silica Membrane Derived from Polysilazane. Journal of European Ceramic Society, 25, 257-264.
http://dx.doi.org/10.1016/j.jeurceramsoc.2004.08.007
[17] Funayama, O., Tshiro, Y., Kamo, A., Okumura, M. and Isoda, T. (1994) Conversion Mechanism of Perhydropolysilazane into Silicon Nitride-Base Ceramics. Journal of Material Science, 29, 4883-4888.
http://dx.doi.org/10.1007/BF00356538
[18] Carcia, P.F., Mclean, R.S., Groner, M.D., Dameron, A.A. and George, S.M. (2009) Gas Diffusion Ultrabarriers on Polymer Substrates Using Al2O3 Atomic Layer Deposition and SiN Plasma-Enhanced Chemical Vapor Deposition. Journal of Applied Physics, 106, Article ID: 023533.
http://dx.doi.org/10.1063/1.3159639
[19] Yagi, Y. and Akashi, K. (2007) Passivation Films on Organic Film Substrates Designed for Organic Electroluminescence Device. Journal of Vacuum Society of Japan, 50, 735-738.
http://dx.doi.org/10.3131/jvsj.50.735
[20] Hanada, T., Negishi, T., Shiroishi, I. and Shiro, T. (2010) Plastic Substrate with Gas Barrier Layer and Transparent Conductive Oxide Thin Film for Flexible Displays. Thin Solid Films, 518, 3089-3092.
http://dx.doi.org/10.1016/j.tsf.2009.09.166
[21] Hata, T. and Nakayama, H. (2008) An Organic Catalytic CVD: Principle, Apparatus and Applications. Thin Solid Films, 516, 558-563.
http://dx.doi.org/10.1016/j.tsf.2007.06.093
[22] Carcia, P.F., MacLean, R.S., Reilly, M.H., Groner, M.D. and George, S.M. (2006) Catalyst of Al2O3 Gas Diffusion Barriers Grown by Atomic Layer Deposition on Polymer. Applied Physics Letters, 89, Article ID: 031915.
http://dx.doi.org/10.1063/1.2221912
[23] Dameron, A.A., Davidson, S.D., Burton, B.B., Carcia, P.F., MacLean, R.S. and George, S.M. (2008) Gas Diffusion Barriers on Polymer Using Multi Layers Fabricated by Al2O3 and Rapid SiO2 Atomic Layer Deposition. Journal of Physical Chemistry C, 112, 4573-4580.
http://dx.doi.org/10.1021/jp076866+
[24] http://www.neg.co.jp/JP/technology/pdf/93-p090.pdf

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.