[1]
|
Aronszajn, N., Cresse, T. and Lipkin, L. (1983) Polyharmonic Functions, Oxford Math. Clarendon, Oxford.
|
[2]
|
Goursat, E. (1898) Sur I’équation ΔΔu = 0. Bulletin de la Société Mathématique de France, 26, 236-237.
|
[3]
|
Vekua, I.N. (1976) On One Method of Solving the First Biharmonic Boundary Value Problem and the Dirichlet Problem. American Mathematical Society Translations, 104, 104-111.
|
[4]
|
Begehr, H., Du, J. and Wang, Y. (2008) A Dirichlet Problem for Polyharmonic Functions. Annali di Matematica Pura ed Applicata, 187, 435-457. http://dx.doi.org/10.1007/s10231-007-0050-5
|
[5]
|
Begehr, H. and Gaertner, E. (2007) A Dirichlet Problem for the Inhomogeneous Polyharmonic Equations in the Upper Half Plane. Georgian Mathematical Journal, 14, 33-52.
|
[6]
|
Verchota, G.C. (2005) The Biharmonic Neumann Problem in Lipschitz Domain. Acta Mathematica, 194, 217-279. http://dx.doi.org/10.1007/BF02393222
|
[7]
|
Du, Z. (2008) Boundary Value Problems for Higher Order Complex Differential Equations. Doctoral Dissertation, Freie Universität Berlin, Berlin.
|
[8]
|
Du, Z., Qian, T. and Wang, J.X. (2012) Polyharmonic Dirichlet Problem in Regular Domain: The Upper Half Plane. Journal of Differential Equations, 252, 1789-1812. http://dx.doi.org/10.1016/j.jde.2011.08.024
|
[9]
|
Stein, E.M. and Weiss, G. (1971) Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, New Jersey.
|
[10]
|
Garnett, J. (2007) Bounded Analytic Functions. Springer, New York.
|
[11]
|
Begehr, H. and Hile, G.N. (1997) A Hierarchy of Integral Operators. Rocky Mountain Journal of Mathematics, 27, 669-706. http://dx.doi.org/10.1216/rmjm/1181071888
|