[1]
|
Ranganathan, P. (2011) The Data Explosion. IEEE Computer Society Press, 39-48. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.204.6768&rep=rep1&type=pdf
|
[2]
|
McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J. and Barton, D. (2012) Big Data. The Management Revolution. Harvard Business Review, 90, 61-67.
|
[3]
|
Delbru, R., Campinas, S. and Tummarello, G. (2012) Searching Web Data: An Entity Retrieval and High-Performance Indexing Model. Web Semantics: Science, Services and Agents on the World Wide Web, 10, 33-58. http://dx.doi.org/10.1016/j.websem.2011.04.004
|
[4]
|
Wu, X., Zhu, X., Wu, G.Q. and Ding, W. (2014) Data Mining with Big Data. IEEE Transactions on Knowledge and Data Engineering, 26, 97-107.
|
[5]
|
Joshi, A. and Jiang, Z. (2002) Retriever: Improving Web Search Engine Results Using Clustering. TEAM, 2002, 59-81. http://dx.doi.org/10.4018/978-1-930708-12-9.ch004
|
[6]
|
Jonquet, C., LePendu, P., Falconer, S., Coulet, A., Noy, N.F., Musen, M.A. and Shah, N.H. (2011) NCBO Resource Index: Ontology-Based Search and Mining of Biomedical Resources. Web Semantics: Science, Services and Agents on the World Wide Web, 9, 316-324. http://dx.doi.org/10.1016/j.websem.2011.06.005
|
[7]
|
Hogan, A., Harth, A., Umbrich, J., Kinsella, S., Polleres, A. and Decker, S. (2011) Searching and Browsing Linked Data with SWSE: The Semantic Web Search Engine. Web Semantics: Science, Services and Agents on the World Wide Web, 9, 365-401. http://dx.doi.org/10.1016/j.websem.2011.06.004
|
[8]
|
Harth, A. (2010) VisiNav: A System for Visual Search and Navigation on Web Data. Web Semantics: Science, Services and Agents on the World Wide Web, 8, 348-354. http://dx.doi.org/10.1016/j.websem.2010.08.001
|
[9]
|
Fazzinga, B., Gianforme, G., Gottlob, G. and Lukasiewicz, T. (2011) Semantic Web Search Based on Ontological Conjunctive Queries. Web Semantics: Science, Services and Agents on the World Wide Web, 9, 453-473. http://dx.doi.org/10.1016/j.websem.2011.08.003
|
[10]
|
Kosala, R. and Blockeel, H. (2000) Web Mining Research: A Survey. ACM SIGKDD Explorations Newsletter, 2, 1-15. http://dx.doi.org/10.1145/360402.360406
|
[11]
|
Mladenic, D. (1999) Text-Learning and Related Intelligent Agents: A Survey. IEEE Intelligent Systems, 14, 44-54. http://dx.doi.org/10.1109/5254.784084
|
[12]
|
Chatterjee, R. (2012) An Analytical Assessment on Document Clustering. International Journal of Computer Network and Information Security (IJCNIS), 4, 63-71. http://dx.doi.org/10.5815/ijcnis.2012.05.08
|
[13]
|
Shah, N. and Mahajan, S. (2012) Semantic Based Document Clustering: A Detailed. International Journal of Computer Applications, 52, 42-52. http://dx.doi.org/10.5120/8202-1598
|
[14]
|
MacQueen, J. (1967) Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1, 281-297.
|
[15]
|
Cheeseman, P. and Stutz, J. (1996) Bayesian Classification (Auto Class): Theory and Results. In: Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R., Eds., Advances in Knowledge Discovery and Data Mining, American Association for Artificial Intelligence, Menlo Park, 153-180.
|
[16]
|
Boley, D., Gini, M., Gross, R., Han, E.H.S., Hastings, K., Karypis, G. and Moore, J. (1999) Document Categorization and Query Generation on the World Wide Web Using WebACE. Artificial Intelligence Review, 13, 365-391. http://dx.doi.org/10.1023/A:1006592405320
|
[17]
|
Jain, A.K. and Dubes, R.C. (1988) Algorithms for Clustering Data. Prentice-Hall, Inc., Upper Saddle River.
|
[18]
|
Chiang, I.J., Lin, T.Y. and Hsu, J.Y.J. (2004) Generating Hypergraph of Term Associations for Automatic Document Concept Clustering. Proceedings of the 8th IASTED International Conference on Artificial Intelligence and Soft Computing, Marbella, 1-3 September 2004, 181-186.
|
[19]
|
Maron, M.E. and Kuhns, J.L. (1960) On Relevance, Probabilistic Indexing and Information Retrieval. Journal of the ACM (JACM), 7, 216-244. http://dx.doi.org/10.1145/321033.321035
|
[20]
|
Fuhr, N. and Buckley, C. (1991) A Probabilistic Learning Approach for Document Indexing. ACM Transactions on Information Systems (TOIS), 9, 223-248. http://dx.doi.org/10.1145/125187.125189
|
[21]
|
Salton, G. and Michael, J.M. (1986) Introduction to Modern Information Retrieval. McGraw-Hill, Inc., New York.
|
[22]
|
Salton, G. and Buckley, C. (1988) Term-Weighting Approaches in Automatic Text Retrieval. Information Processing & Management, 24, 513-523. http://dx.doi.org/10.1016/0306-4573(88)90021-0
|
[23]
|
Sparck Jones, K. (1972) A Statistical Interpretation of Term Specificity and Its Application in Retrieval. Journal of Documentation, 28, 11-21. http://dx.doi.org/10.1108/eb026526
|
[24]
|
Moffat, A. and Zobel, J. (1994) Compression and Fast Indexing for Multi-Gigabyte Text Databases. Australian Computer Journal, 26, 1-9.
|
[25]
|
Feldman, R., Fresko, M., Kinar, Y., Lindell, Y., Liphstat, O., Rajman, M. and Zamir, O. (1998) Text Mining at the Term Level. In: Zytkow, J.M. and Quafafou, M., Eds., Principles of Data Mining and Knowledge Discovery, Springer, Berlin Heidelberg, 65-73. http://dx.doi.org/10.1007/BFb0094806
|
[26]
|
Feldman, R., Dagan, I. and Kloesgen, W. (1996) Efficient Algorithms for Mining and Manipulating Associations in Texts. Proceedings of the Thirteenth European Meeting on Cybernetics and Systems Research, Vienna, 9-12 April 1996, 949-954.
|
[27]
|
Feldman, R. and Hirsh, H. (1996) Mining Associations in Text in the Presence of Background Knowledge. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, 2-4 August 1996, 343-346.
|
[28]
|
Agrawal, R., Imieliński, T. and Swami, A. (1993) Mining Association Rules between Sets of Items in Large Databases. ACM SIGMOD Record, 22, 207-216. http://dx.doi.org/10.1145/170036.170072
|