Feasibility of Improved Attenuation Correction for SPECT Reconstruction in the Presence of Dense Materials Using Dual-Energy Virtual Monochromatic CT: A Phantom Study
Sachiko Yamada1,2*, Takashi Ueguchi3,4, Eku Shimosegawa5, Koichi Fujino1, Takeshi Shimazu6, Kenya Murase2, Jun Hatazawa7
1Department of Radiology, Osaka University Hospital, Osaka, Japan.
2Department of Medical Physics and Engineering, Osaka University Graduate School of Medicine, Osaka, Japan.
3Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan.
4Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
5Department of Molecular Imaging in Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
6Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan.
7Department of Nuclear Medicine and Tracer Kinetics, Osaka University Graduate School of Medicine, Osaka, Japan.
DOI: 10.4236/ojmi.2015.54023   PDF   HTML   XML   4,159 Downloads   6,074 Views   Citations

Abstract

Objective: Computed tomography (CT)-based attenuation correction (CTAC) offers the clear benefit of reliable reconstruction of single-photon emission computed tomography (SPECT) images through its ability to achieve object-specific attenuation maps, but artifacts from dense materials often deteriorate CTAC performance. Therefore, we investigate the feasibility of CTAC in the presence of dense materials using dual-energy virtual monochromatic CT data. Methods: A sodium pertechnetate-filled cylindrical uniform phantom, with a pair of undiluted iodine syringes attached, is scanned with a dual-source CT scanner to obtain both single-energy (120 kVp) polychromatic and dual-energy (80 kVp/140 kVp with tin filtering) virtual monochromatic CT images. The single-energy and the dual-energy CT images are then converted to attenuation maps at 141 keV. SPECT images are reconstructed from 99mTc emission data of the phantom using each single-energy and dual-energy attenuation map and incorporating CTAC procedure. A region-of-in- terest analysis is performed to quantitatively compare the attenuation maps between the single-energy and the dual-energy techniques, each at an iodine-free position and a position adjacent to the iodine solutions. Results: At the iodine-free position, the phantom provides a uniform distribution of attenuation maps in both the single-energy and the dual-energy techniques. In the presence of adjacent iodine solutions, however, severe artifacts appeare in the single-energy CT images. These artifacts make attenuation values fluctuate, resulting in erroneous pixel values in the CTAC SPECT images. In contrast, dual-energy CT strongly suppresses the artifacts and hence improves the uniformity of the attenuation maps and the resultant SPECT images. Conclusions: Dual-energy CT with virtual monochromatic reconstruction has the potential to substantially reduce artifacts arising from dense materials. It has the potential to improve the accuracy of attenuation maps and the resultant CTAC SPECT images.

Share and Cite:

Yamada, S. , Ueguchi, T. , Shimosegawa, E. , Fujino, K. , Shimazu, T. , Murase, K. and Hatazawa, J. (2015) Feasibility of Improved Attenuation Correction for SPECT Reconstruction in the Presence of Dense Materials Using Dual-Energy Virtual Monochromatic CT: A Phantom Study. Open Journal of Medical Imaging, 5, 183-193. doi: 10.4236/ojmi.2015.54023.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Pazhenkottil, A.P., Ghadri, J.R., Nkoulou, R.N., Wolfrum, M., Buechel, R.R., Kuest, S.M., Husmann, L., Herzog, B.A., Gaemperli, O. and Kaufmann, P.A. (2011) Improved Outcome Prediction by SPECT Myocardial Perfusion Imaging After CT Attenuation Correction. Journal of Nuclear Medicine, 52, 196-200.
http://dx.doi.org/10.2967/jnumed.110.080580
[2] Stodilka, R.Z., Kemp, B.J., Prato, F.S. and Nicholson, R.L. (1998) Importance of Bone Attenuation in Brain SPECT Quantification. Journal of Nuclear Medicine, 39, 190-197.
[3] Zaidi, H. and Hasegawa, B. (2003) Determination of the Attenuation Map in Emission Tomography. Journal of Nuclear Medicine, 44, 291-315.
[4] Chang, L.T. (1973) A Method for Attenuation Correction in Radionuclide Computed Tomography. IEEE Transactions on Nuclear Science, 25, 638-643.
http://dx.doi.org/10.1109/TNS.1978.4329385
[5] Hayashi, M., Deguchi, J., Utsunomiya, K., Yamada, M., Komori, T., Takeuchi, M., Kanna, K. and Narabayashi, I. (2005) Comparison of Methods of Attenuation and Scatter Correction in Brain Perfusion SPECT. Journal of Nuclear Medicine Technology, 33, 224-229.
[6] Shimosegawa, E., Fujino, K., Kato, H. and Hatazawa, J. (2013) Quantitative CBF Measurement Using an Integrated SPECT/CT System: Validation of Three-Dimensional Ordered-Subset Expectation Maximization and CT-Based Attenuation Correction by Comparing with O-15 Water PET. Annals of Nuclear Medicine, 27, 822-833.
http://dx.doi.org/10.1007/s12149-013-0752-2
[7] Lang, T.F., Hasegawa, B.H., Liew, S.C., Brown, J.K., Blankespoor, S., Reilly, S.M., Gingold, E.L. and Cann, C.E. (1991) A Prototype Emission-Transmission Imaging System. Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference, 3, 1902-1906.
http://dx.doi.org/10.1109/NSSMIC.1991.259246
[8] Lang, T.F., Hasegawa, B.H., Liew, S.C., Brown, J.K., Blankespoor, S.C., Reilly, S.M., Gingold, E.L. and Cann, C.E. (1992) Description of a Prototype Emission-Transmission Computed Tomography Imaging System. Journal of Nuclear Medicine, 33, 1881-1887.
[9] Hasegawa, B.H., Lang, T.F., Brown, J.K., Gingold, E.L. and Blankespoor, S.C. (1992) SPECT Reconstruction Using Uniform and Object-Specific Attenuation Maps with Emission-Transmission CT. IEEE Conference on Nuclear Science Symposium and Medical Imaging, 2, 1059-1061.
http://dx.doi.org/10.1109/NSSMIC.1992.301475
[10] Kalki, K., Brown, J.K., Blankespoor, S.C., Hasegawa, B.H., Dae, M.W., Chin, M. and Stillson, C.A. (1996) Myocardial Perfusion Imaging with a Correlated X-Ray CT and SPECT System: An Animal Study. IEEE Transactions on Nuclear Science, 43, 2000-2007.
http://dx.doi.org/10.1109/23.507260
[11] Kalki, K., Blankespoor, S.C., Brown, J.K., Hasegawa, B.H., Dae, M.W., Chin, M. and Stillson, C.A. (1997) Myocardial Perfusion Imaging with a Combined X-Ray CT and SPECT System. Journal of Nuclear Medicine, 38, 1535-1540.
[12] LaCroix, K.J., Tsui, B.M.W., Hasegawa, B.H. and Brown, J.K. (1994) Investigation of the Use of X-Ray CT Images for Attenuation Compensation in SPECT. IEEE Transactions on Nuclear Science, 41, 2793-2799.
http://dx.doi.org/10.1109/23.340649
[13] Fleming, J.S. (1989) A Technique for Using CT Images in Attenuation Correction and Quantification in SPECT. Nuclear Medicine Communications, 10, 83-97.
http://dx.doi.org/10.1097/00006231-198902000-00002
[14] Burger, C., Goerres, G., Schoenes, S., Buck, A., Lonn, A.H. and von Schulthess, G.K. (2002) PET Attenuation Coefficients from CT Images: Experimental Evaluation of the Transformation of CT into PET 511-keV Attenuation Coefficients. European Journal of Nuclear Medicine and Molecular Imaging, 29, 922-927.
http://dx.doi.org/10.1007/s00259-002-0796-3
[15] Kinahan, P.E., Townsend, D.W., Beyer, T. and Sashin, D. (1998) Attenuation Correction for a Combined 3D PET/CT Scanner. Medical Physics, 25, 2046-2053.
http://dx.doi.org/10.1118/1.598392
[16] von Schulthess, G.K., Steinert, H.C. and Hany, T.F. (2006) Integrated PET/CT: Current Applications and Future Directions. Radiology, 238, 405-422.
http://dx.doi.org/10.1148/radiol.2382041977
[17] Mariani, G., Bruselli, L., Kuwert, T., Kim, E.E., Flotats, A., Israel, O., Dondi, M. and Watanabe, N. (2010) A Review on the Clinical Uses of SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging, 37, 1959-1985.
http://dx.doi.org/10.1007/s00259-010-1390-8
[18] Ishii, K., Hanaoka, K., Okada, M., Kumano, S., Komeya, Y., Tsuchiya, N., Hosono, M. and Murakami, T. (2012) Impact of CT Attenuation Correction by SPECT/CT in Brain Perfusion Images. Annals of Nuclear Medicine, 26, 241-247.
http://dx.doi.org/10.1007/s12149-011-0567-y
[19] Barrett, J.F. and Keat, N. (2004) Artifacts in CT: Recognition and Avoidance. RadioGraphics, 24, 1679-1691.
http://dx.doi.org/10.1148/rg.246045065
[20] Pessis, E., Campagna, R., Sverzut, J.M., Bach, F., Rodallec, M., Guerini, H., Feydy, A. and Drapé J.L. (2013) Virtual Monochromatic Spectral Imaging with Fast Kilovoltage Switching: Reduction of Metal Artifacts at CT. RadioGraphics, 33, 573-583.
http://dx.doi.org/10.1148/rg.332125124
[21] Brooks, R.A. and Di Chiro, G. (1976) Beam Hardening in X-Ray Reconstructive Tomography. Physics in Medicine and Biology, 21, 390-398.
http://dx.doi.org/10.1088/0031-9155/21/3/004
[22] Suzuki, A., Koshida, K. and Matsubara, K. (2013) Adjustment of Overestimated CT-Based Attenuation Correction on Bone SPECT/CT after Hip-Resurfacing Arthroplasty. Journal of Nuclear Medicine Technology, 41, 203-207.
http://dx.doi.org/10.2967/jnmt.113.121152
[23] Bonta, D.V. and Wahl, R.L. (2010) Overcorrection of Iodinated Contrast Attenuation in SPECT-CT: Phantom Studies. Medical Physics, 37, 4897-4901.
http://dx.doi.org/10.1118/1.3483100
[24] Alvarez, R.E. and Macovski, A. (1976) Energy-Selective Reconstructions in X-Ray Computerized Tomography. Physics in Medicine and Biology, 21, 733-744.
http://dx.doi.org/10.1088/0031-9155/21/5/002
[25] Bamberg, F., Dierks, A., Nikolaou, K., Reiser, M.F., Becker, C.R. and Johnson, T.R. (2011) Metal Artifact Reduction by Dual-Energy Computed Tomography Using Monoenergetic Extrapolation. European Radiology, 21, 1424-1429.
http://dx.doi.org/10.1007/s00330-011-2062-1
[26] Meinel, F.G., Bischoff, B., Zhang, Q., Bamberg, F., Reiser, M.F. and Johnson, T.R. (2012) Metal Artifact Reduction by Dual-Energy Computed Tomography Using Energetic Extrapolation: A Systematically Optimized Protocol. Iinvestigative Radiology, 47, 406-414.
http://dx.doi.org/10.1097/RLI.0b013e31824c86a3
[27] Zhou, C., Zhao, Y.E., Luo, S., Shi, H., Li, L., Zheng, L., Zhang, L.J. and Lu, G. (2011) Monoenergetic Imaging of Dual-Energy CT Reduces Artifacts from Implanted Metal Orthopedic Devices in Patients with Fractures. Academic Radiology, 18, 1252-1257.
http://dx.doi.org/10.1016/j.acra.2011.05.009
[28] Kalender, W.A., Perman, W.H., Vetter, J.R. and Klotz, E. (1986) Evaluation of a Prototype Dual-Energy Computed Tomographic Apparatus. I. Phantom Studies. Medical Physics, 13, 334-339.
http://dx.doi.org/10.1118/1.595958
[29] Guy, M.J., Castellano-Smith, I.A., Flower, M.A., Flux, G.D., Ott, R.J. and Visvikis, D. (1998) DETECT-Dual Energy Transmission Estimation CT—For Improved Attenuation Correction in SPECT and PET. IEEE Transactions on Nuclear Science, 45, 1261-1267.
http://dx.doi.org/10.1109/23.682013
[30] Kinahan, P.E., Fessler, J.A., Alessio, A.M. and Lewellen, T.K. (2004) Quantitative Attenuation Correction for PET/CT Using Iterative Reconstruction of Low-Dose Dual-Energy CT. 2004 IEEE Nuclear Science Symposium Conference Record, 5, 3285-3289.
http://dx.doi.org/10.1109/NSSMIC.2004.1466391
[31] Rehfeld, N.S., Heismann, B.J., Kupferschlager, J., Aschoff, P., Christ, G., Pfannenberg, A.C. and Pichler, B.J. (2008) Single and Dual Energy Attenuation Correction in PET/CT in the Presence of Iodine-Based Contrast Agents. Medical Physics, 35, 1959-1969.
http://dx.doi.org/10.1118/1.2903476
[32] Huh, W., Fessler, J.A., Alessio, A.M. and Kinahan, P.E. (2009) Fast kVp-Switching Dual-Energy CT for PET Attenuation Correction. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Orlando, 24 October-1 November 2009, 2510-2515.
[33] Primak, A.N., Ramirez Giraldo, J.C., Liu, X., Yu, L. and McCollough, C.H. (2009) Improved Dual-Energy Material Discrimination for Dual-Source CT by Means of Additional Spectral Filtration. Medical Physics, 36, 1359-1369.
http://dx.doi.org/10.1118/1.3083567
[34] Primak, A.N., Giraldo, J.C., Eusemann, C.D., Schmidt, B., Kantor, B., Fletcher, J.G. and McCollough, C.H. (2010) Dual-Source Dual-Energy CT with Additional Tin Filtration: Dose and Image Quality Evaluation in Phantoms and In Vivo. American Journal of Roentgenology, 195, 1164-1174.
http://dx.doi.org/10.2214/AJR.09.3956
[35] Vija, A.H., Hawman, E.G. and Engdahl, J.C. (2004) Analysis of a SPECT OSEM Reconstruction Method with 3D Beam Modeling and Optional Attenuation Correction: Phantom Studies. 2003 IEEE Nuclear Science Symposium Conference Record, 4, 2662-2666.
[36] Zeintl, J., Vija, A.H., Yahil, A., Hornegger, J. and Kuwert, T. (2010) Quantitative Accuracy of Clinical 99mTc SPECT/ CT Using Ordered-Subset Expectation Maximization with Three-Dimensional Resolution Recovery, Attenuation, and Scatter Correction. Journal of Nuclear Medicine, 51, 921-928.
http://dx.doi.org/10.2967/jnumed.109.071571
[37] Flohr, T.G., McCollough, C.H., Bruder, H., Petersilka, M., Gruber, K., Suss, C., Grasruck, M., Stierstorfer, K., Krauss, B., Raupach, R., Primak, A.N., Küttner, A., Achenbach, S., Becker, C., Kopp, A. and Ohnesorge, B.M. (2006) First Performance Evaluation of a Dual-Source CT (DSCT) System. European Radiology, 16, 256-268.
http://dx.doi.org/10.1007/s00330-005-2919-2
[38] Boll, D.T., Merkle, E.M., Paulson, E.K. and Fleiter, T.R. (2008) Coronary Stent Patency: Dual-Energy Multidetector CT Assessment in a Pilot Study with Anthropomorphic Phantom. Radiology, 247, 687-695.
http://dx.doi.org/10.1148/radiol.2473070849
[39] Ardekani, B.A., Braun, M., Hutton, B.F., Kanno, I. and Iida, H. (1995) A Fully Automatic Multimodality Image Registration Algorithm. Journal of Computer Assisted Tomography, 19, 615-623.
http://dx.doi.org/10.1097/00004728-199507000-00022

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.