Fyn Expression Predicates Both Protective Immunity and Onset of Autoimmunity

DOI: 10.4236/oji.2015.55020   PDF   HTML   XML   4,020 Downloads   11,734 Views   Citations


Genomic disruption of Fyn has not been associated with an immune-deficient phenotype, notwithstanding the profound impairment in IL-2 production by T cells derived from Fyn-deficient animals observed in vitro. The results presented demonstrate that Fyn deficient animals succumb to influenza infection ahead of the protective expansion of lung infiltrating T cells and viral clearance observed in wild-type hosts. Formal proof that Fyn-dependent IL-2 production mediates T cell expansion in vivo is provided using a model of T cell induced enteropathy. Specifically, Fyn deficient naive T cells do not induce colitis in SCID animals due to their lack of expansion, and Fyn re-expression rescues both IL-2 production and its capacity to support in vivo expansion leading to colitis. These results reconcile the obligatory role of Fyn in T cell activation and autocrine IL-2 supported growth; and underscore the mechanism through which its function is integrated with and regulated by Lck.

Share and Cite:

Moemeni, B. , Vacaresse, N. , Vainder, M. , Wortzman, M. , Watts, T. , Veillette, A. , Gajewski, T. and Julius, M. (2015) Fyn Expression Predicates Both Protective Immunity and Onset of Autoimmunity. Open Journal of Immunology, 5, 244-259. doi: 10.4236/oji.2015.55020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Appleby, M.W., Gross, J.A., Cooke, M.P., Levin, S.D., Qian, X. and Perlmutter, R.M. (1992) Defective T Cell Receptor Signaling in Mice Lacking the Thymic Isoform of p59fyn. Cell, 70, 751-763.
[2] Stein, P.L., Lee, H., Rich, S. and Soriano, P. (1992) pp59fyn Mutant Mice Display Differential Signaling in Thymocytes and Peripheral T Cells. Cell, 70, 741-750. http://dx.doi.org/10.1016/0092-8674(92)90308-Y
[3] Mamchak, A.A., Sullivan, B.M., Hou, B., Lee, L.M., Gilden, J.K., Krummel, M.F., Locksley, R.M. and DeFranco, A.L. (2008) Normal Development and Activation but Altered Cytokine Production of Fyn-Deficient CD4+ T Cells. The Journal of Immunology, 181, 5374-5385.
[4] Eberl, G., Lowin-Kropf, B. and MacDonald, H.R. (1999) Cutting Edge: NKT cell Development Is Selectively Impaired in Fyn-Deficient Mice. The Journal of Immunology, 163, 4091-4094.
[5] Filipp, D., Leung, B.L., Zhang, J., Veillette, A. and Julius, M. (2004) Enrichment of LCK in Lipid Rafts Regulates Colocalized Fyn Activation and the Initiation of Proximal Signals through TCR Alpha Beta. The Journal of Immunology, 172, 4266-4274. http://dx.doi.org/10.4049/jimmunol.172.7.4266
[6] Filipp, D., Zhang, J., Leung, B.L., Shaw, A., Levin, S.D., Veillette, A. and Julius, M. (2003) Regulation of Fyn through Translocation of Activated LCK into Lipid Rafts. The Journal of Experimental Medicine, 197, 1221-1227. http://dx.doi.org/10.1084/jem.20022112
[7] Filipp, D., Moemeni, B., Ferzoco, A., Kathirkamathamby, K., Zhang, J., Ballek, O., Davidson, D., Veillette, A. and Julius, M. (2008) Lck-Dependent Fyn Activation Requires C-Terminus-Dependent Targeting of Kinase-Active Lck to Lipid Rafts. Journal of Biological Chemistry, 283, 26409-26422.
[8] Leach, M.W., Bean, A.G., Mauze, S., Coffman, R.L. and Powrie, F. (1996) Inflammatory Bowel Disease in C.B-17 Scid Mice Reconstituted with the CD45RB High Subset of CD4+ T Cells. American Journal of Pathology, 148, 1503- 1515.
[9] Powrie, F., Leach, M.W., Mauze, S., Caddie, L.B. and Coffman, R.L. (1993) Phenotypically Distinct Subsets of CD4+ T Cells Induce or Protect FROM Chronic Intestinal Inflammation in C. B-17 Scid Mice. International Immunology, 5, 1461-1471. http://dx.doi.org/10.1093/intimm/5.11.1461
[10] Powrie, F., Mauze, S. and Coffman, R.L. (1997) CD4+ T Cells in the Regulation of Inflammatory Responses in the Intestine. Research in Immunology, 148, 576-581.
[11] Ennis, F.A., Verbonitz, M., Reichelderfer, P. and Daniel, S. (1976) Recombination of Influenza A Virus Strains: Effect on Pathogenicity. Developments in Biological Standardization, 33, 220-225.
[12] Lin, G.H., Sedgmen, B.J., Moraes, T.J., Snell, L.M., Topham, D.J. and Watts, T.H. (2009) Endogenous 4-1BB Ligand Plays a Critical Role in Protection from Influenza-Induced Disease. Journal of immunology, 182, 934-947. http://dx.doi.org/10.4049/jimmunol.182.2.934
[13] Wan, Y.Y., Leon, R.P., Marks, R., Cham, C.M., Schaack, J., Gejewski, T.F. and Degregori, J. (2000) Transgenic Expression of the Coxasackie/Adenovirus Receptor Enables Adenoviral-Mediated Gene Delivery in Naive T Cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 13784-13789. http://dx.doi.org/10.1073/pnas.250356297
[14] Cottey, R., Rowe, C.A. and Bender, B.S. (2001) Influenza Virus. In: Coico, R., Ed., Current Protocols in Immunology, John Wiley and Sons, Hoboken. http://dx.doi.org/10.1002/0471142735.im1911s42
[15] Poussier, P., Ning, T., Chen, J., Banerjee, D. and Julius, M. (2000) Intestinal Inflammation Observed in IL-2R/IL-2 Mutant Mice Is Associated with Impaired Intestinal T Lymphopoiesis. Gastroenterology, 118, 880-891. http://dx.doi.org/10.1016/S0016-5085(00)70174-0
[16] Quah, B.J., Warren, H.S. and Parish, C.R. (2007) Monitoring Lymphocyte Proliferation in Vitro and in Vivo with the Intracellular Fluorescent Dye Carboxyfluorescein Diacetate Succinimidyl Ester. Nature Protocols, 2, 2049-2056. http://dx.doi.org/10.1038/nprot.2007.296
[17] Marmour, M.D. and Julius, M. (2001) Role for Lipid Rafts in Regulating Interleukin-2 Receptor Signaling. Blood, 98, 1489-1497. http://dx.doi.org/10.1182/blood.V98.5.1489
[18] Filby, A., Seddon, B., Kleczkowska, J., Salmond, R., Tomlinson, P., Smida, M., Lindquist, J.A., Schraven, B. and Zamoyska, R. (2007) Fyn Regulates the Duration of TCR Engagement Needed for Commitment to Effector Function. Journal of Immunology, 179, 4635-4644.
[19] Sugie, K., Jeon, M. and Grey, H.M. (2004) Activation of Naive CD4 T Cells by Anti-CD3 Reveals an Important Role for Fyn in Lck-Mediated Signaling. Proceedings of the National Academy of Sciences of the United States of America, 101, 14859-14864. http://dx.doi.org/10.1073/pnas.0406168101
[20] da Silva, A., Rosenfield, J., Mueller, I., Bouton, A., Hirai, H. and Rudd, C. (1997) Biochemical Analysis of p120/130: A Protein-Tyrosine Kinase Substrate Restricted to T and Myeloid Cells. The Journal of Immunology, 158, 2007-2016.
[21] Bettelli, E., Carrier, Y., Gao, W., Korn, T., Strom, T.B., Oukka, M., Weiner, H.L. and Kuchroo, V.K. (2006) Reciprocal Developmental Pathways for the Generation of Pathogenic Effector TH17 and Regulatory T Cells. Nature, 441, 235- 238. http://dx.doi.org/10.1038/nature04753
[22] Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. and Stockinger, B. (2006) TGFβ in the Context of an Inflammatory Cytokine Milieu Supports de Novo Differentiation of IL-17-Producing T Cells. Immunity, 24, 179-189. http://dx.doi.org/10.1016/j.immuni.2006.01.001
[23] Khanolkar, A., Fuller, M.J. and Zajac, A.J. (2004) CD4 T Cell-Dependent CD8 T Cell Maturation. Journal of Immunology, 172, 2834-2844. http://dx.doi.org/10.4049/jimmunol.172.5.2834
[24] Williams, M.A., Tyznik, A.J. and Bevan, M.J. (2006) Interleukin-2 Signals during Priming Are Required for Secondary Expansion of CD8+ Memory T Cells. Nature, 441, 890-893.
[25] Wilson, E.B. and Livingstone, A.M. (2008) Cutting Edge: CD4+ T Cell-Derived IL-2 Is Essential for Help-Dependent Primary CD8+ T Cell Responses. Journal of Immunology, 181, 7445-7448.
[26] Thomas, P.G., Keating, R., Hulse-Post, D.J. and Doherty, P.C. (2006) Cell-Mediated Protection in Influenza Infection. Emerging Infectious Diseases, 12, 48-54. http://dx.doi.org/10.3201/eid1201.051237
[27] Gillis, S., Ferm, M.M., Ou, W. and Smith, K.A. (1978) T Cell Growth Factor: Parameters of Production and a Quantitative Microassay for Activity. Journal of Immunology, 120, 2027-2032.
[28] Robb, R.J. and Smith, K.A. (1981) Heterogeneity of Human T-Cell Growth Factor(s) Due to Variable Glycosylation. Molecular Immunology, 18, 1087-1094. http://dx.doi.org/10.1016/0161-5890(81)90024-9
[29] Smith, K.A. (1988) Interleukin-2: Inception, Impact, and Implications. Science, 240, 1169-1176.
[30] Sojka, D.K., Bruniquel, D., Schwartz, R.H. and Singh, N.J. (2004) IL-2 Secretion by CD4+ T Cells in Vivo Is Rapid, Transient, and Influenced by TCR-Specific Competition. Journal of Immunology, 172, 6136-6143. http://dx.doi.org/10.4049/jimmunol.172.10.6136
[31] Sadlack, B., Merz, H., Schorle, H., Schimpl, A., Feller, A.C. and Horak, I. (1993) Ulcerative Colitis-Like Disease in Mice with a Disrupted Interleukin-2 Gene. Cell, 75, 253-261.
[32] Willerford, D.M., Chen, J., Ferry, J.A., Davidson, L., Ma, A. and Alt, F.W. (1995) Interleukin-2 Receptor Alpha Chain Regulates the Size and Content of the Peripheral Lymphoid Compartment. Immunity, 3, 521-530. http://dx.doi.org/10.1016/1074-7613(95)90180-9
[33] Schorle, H., Holtschke, T., Hunig, T., Schimpl, A. and Horak, I. (1991) Development and Function of T Cells in Mice Rendered Interleukin-2 Deficient by Gene Targeting. Nature, 352, 621-624.
[34] Poussier, P., Ning, T., Banerjee, D. and Julius, M. (2002) A Unique Subset of Self-Specific Intraintestinal T Cells Maintains Gut Integrity. Journal of Experimental Medicine, 195, 1491-1497.
[35] Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. and Penit, C. (1998) Regulatory CD4 T Cells: Expression of IL-2R Alpha Chain, Resistance to Clonal Deletion and IL-2 Dependency. International Immunology, 10, 371-378. http://dx.doi.org/10.1093/intimm/10.4.371
[36] Kameyama, K., Nemoto, Y., Kanai, T., Shinohara, T., Okamoto, R., Tsuchiya, K., Nakamura, T., Sakamoto, N., Totsuka, T., Hibi, T. and Watanabe, M. (2010) IL-2 Is Positively Involved in the Development of Colitogenic CD4+ IL-7R Alpha High Memory T Cells in Chronic Colitis. European Journal of Immunology, 40, 2423-2436. http://dx.doi.org/10.1002/eji.200939764
[37] Latour, S., Roncagalli, R., Chen, R., Bakinowski, M., Shi, X., Schwartzberg, P.L., Davidson, D. and Veillette, A. (2003) Binding of SAP SH2 Domain to FynT SH3 Domain Reveals a Novel Mechanism of Receptor Signalling in Immune Regulation. Nature Cell Biology, 5, 149-154.
[38] Qian, D., Lev, S., van Oers, N.S., Dikic, I., Schlessinger, J. and Weiss, A. (1997) Tyrosine Phosphorylation of Pyk2 Is Selectively Regulated by Fyn during TCR Signaling. Journal of Experimental Medicine, 185, 1253-1260. http://dx.doi.org/10.1084/jem.185.7.1253
[39] Davidson, D., Shi, X., Zhang, S., Wang, H., Nemer, M., Ono, N., Ohno, S., Yanagi, Y. and Veillette, A. (2004) Genetic Evidence Linking SAP, the X-Linked Lymphoproliferative Gene Product, to Src-Related Kinase FynT in TH2 Cytokine Regulation. Immunity, 21, 707-717.
[40] Beinke, S.R., Phee, H., Clingan, J.M., Schlessinger, J., Matloubian, M. and Weiss, A. (2010) Proline-Rich Tyrosine Kinase-2 Is Critical for CD8 T-Cell Short-Lived Effector Fate. Proceedings of the National Academy of Sciences of the United States of America, 107, 16234-16239.
[41] Veale, M., Raab, M., Li, Z., da Silva, A.J., Kraeft, S.K., Weremowicz, S., Morton, C.C. and Rudd, C.E. (1999) Novel Isoform of Lymphoid Adaptor FYN-T-Binding Protein (FYB-130) Interacts with SLP-76 and Up-Regulates Interleukin 2 Production. Journal of Biological Chemistry, 274, 28427-28435.
[42] Griffiths, E.K., Krawczyk, C., Kong, Y.-Y., Raab, M., Hyduk, S.J., Bouchard, D., Chan, V.S., Kozieradzki, I., Oliveira-dos-Santos, A.J., Wakeham, A., et al. (2001) Positive Regulation of T Cell Activation and Integrin Adhesion by the Adapter Fyb/Slap. Science, 293, 2260-2263.
[43] Yablonski, D., Kadlecek, T. and Almeida, A.R. (2001) Identification of a Phospholipase C-γ1 (PLC-γ1) SH3 Domain-Binding Site in SLP-76 Required for T-Cell Receptor-Mediated Activation of PLC-γ1 and NFAT. Molecular and Cellular Biology, 21, 4208-4218. http://dx.doi.org/10.1128/MCB.21.13.4208-4218.2001
[44] Meldrum, E., Parker, P.J. and Carozzi, A. (1991) The PtdIns-PLC Superfamily and Signal Transduction. Biochimica et Biophysica Acta, 1092, 49-71. http://dx.doi.org/10.1016/0167-4889(91)90177-Y
[45] Hogan, P.G., Chen, L., Nardone, J. and Rao, A. (2003) Transcriptional Regulation by Calcium, Calcineurin, and NFAT. Genes & Development, 17, 2205-2232. http://dx.doi.org/10.1101/gad.1102703

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.