[1]
|
Mitchell, A.F.S. (1992) Estimative and Predictive Distances. Test, 1, 105-121. http://dx.doi.org/10.1007/BF02562666
|
[2]
|
Mitchell, A.F.S. and Krzanowski, W.J. (1985) The Mahalanobis Distance and Elliptic Distributions. Biometrika, 72, 464-467. http://dx.doi.org/10.1093/biomet/72.2.464
|
[3]
|
Kass, R.E. and Vos, P.W. (1997) Geometrical Foundations of Asymptotic Inference. John Wiley & Sons, Inc.
http://dx.doi.org/10.1002/9781118165980
|
[4]
|
Amari, S.-I. (1990) Differential-Geometrical Methods in Statistics. Springer, New York.
|
[5]
|
Jensen, U. (1995) Review of “The Derivation and Calculation of Rao Distances with an Application to Portfolio Theory”. In: Maddala, P., Phillips, G.S. and Srinivasan, T., Eds., Advances in Econometrics and Quantitative Economics: Essays in Honor of C.R. Rao, Blackwell, Cambridge, 413-462.
|
[6]
|
Struik, D.J. (1961) Lectures on Classical Differential Geometry. 2nd Edition, Dover Publications, Inc.
|
[7]
|
Grey, A. (1993) Modern Differential Geometry of Curves and Surfaces. CRC Press, Inc., Boca Raton.
|
[8]
|
Chen, W.W.S. (2014) A Note on Finding Geodesic Equation of Two Parameters Gamma Distribution. Applied Mathematics, 5, 3511-3517. www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2014.521328
|
[9]
|
Chen, W.W.S. (2014) A Note on Finding Geodesic Equation of Two Parameter Weibull Distribution. Theoretical Mathematics & Applications, 4, 43-52.
|
[10]
|
Balakrishnan, N. and Nevzorov, V.B. (2003) A Primer on Statistical Distributions. John Wiley & Sons, Inc.
|
[11]
|
Gradshteyn, I.S., Ryzhik, I.M. and Jeffrey, A. (1994) Table of Integrals, Series, and Products. 5th Edition, Academic Press.
|